Investigating the effect of Marangoni phenomenon on single drop density on Wenzel and Cassie structures

Authors

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2 PhD Student School of Mechanical Engineering, Iran University of Science and Technology, 16846, Tehran, Iran.

3 Associate Professor Head of LNG Research Laboratory School of Mechanical Engineering, Iran University of Science and Technology, 16846, Tehran, Iran.

Abstract

The change of the vapor to liquid phase, which is widely used in industry, is called condensation. Dropwise condensation(DWC) occurs on the hydrophobic and the super hydrophobic surfaces. Research has shown that the creation of micro-nanostructured structures on surfaces is one of the ways . The difference in temperature between the vapor and the liquid can lead to temperature gradient, which causes the convection Marangoni convection. This paper simulates a single drop on surfaces with Cassie and Wenzel structures in four different modes and a smooth surface, and the heat transfer rate for a single drop condensed on these surfaces is calculated in two modes with and without marangoni.The results show that the rate of heat transfer passing through the static drop in the case of the presence of marangoni is higher than the non-Maragoni mode. The rate of heat transfer from the droplet in the without-Marangoni state on the surface with the roughness of the cassie from the smooth surface is 350% ,And the smooth surface is 128% higher than the surface with the roughness of the the Wenzel. In the case of Marangoni, the mode of change of heat transfer rate from these surfaces is affected by the contact angle of the drop on the surface.

Keywords


[1] Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer Briefs Appl Sci Technol, New York.
[2] Chung BJ, Kim MC, Ahmadinejad M (2008) Film-wise and drop-wise condensation of steam on short inclined plates. J Mech Sci Technol 22(1): 127-133.
[3] Bonner R, (2020) Direct simulations of Biphilic-surface condensation: optimized size effects. Front Heat Mass Transf 14.
[4] Schmidt E, Schurig, W, Sellschopp W, (1930) Versuche uber die kondensation vonwasserdampf in film- und tropfenform. 1: 53-63.
[5] Sikarwar BS, Khandekar S, Muralidhar K (2013) Effect of drop shape on heat transfer during dropwise condensation underneath inclined surfaces.Interfacial Phenom Heat Transf 38(6): 1135-1171.
[6] Vemuri S, Kim KJ (2006) An Experimental and Theoretical Study on the Concept of Dropwise Condensation. Int J Heat Mass Transf 49(3): 649-657.
[7] Neumann AW, Abdelmessih AH, Hameed A (1978) The role of contact angles and contact angle hysteresis in dropwise condensation heat transfer. Int J Heat Mass Transf 21(7): 947-953.
[8]Abdelmessih AH, Neumann AW, Yang SW (1975) The effect of surface characteristics on dropwise condensation. lett heat mass trans 2(4): 285-291.
[9] Kim S,  Kim  KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transfer 133(8): 081502-081502-8.
[10] He B, Patankar N A, Lee J (2003) Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19(12) : 4999-5003.
[11] Lafuma A, Quéré D (2003) Superhydrophobic States. Nature Mater 2(7) : 457-460.
[12] Lee, SM, Jung ID,  Ko  JS (2008) The effect of the surface wettability of nanoprotrusions formed on network-type microstructures. J Micromech Microeng 18(12): 125007.
[13] Saffari H, Sohrabi B, Noori, MR, Talesh Bahrami, HRT (2018) Optimal condition for fabricating superhydrophobic aluminum surfaces with controlled anodizing processes. Appl Surf Sci 435: 1322-1328.
[14] Talesh Bahrami HR, Ahmadi B, Saffari H (2017) Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes. Mater Lett 189: 62-65.
[15] Talesh Bahrami HR., Ahmadi B,  Saffari  H (2017) Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach. Mater Res Express 4(5): 055014.
[16] Miljkovic N, Enright R, Wang EN (2013) Modeling and optimization of superhydrophobic condensation. J Heat Transfer 135(11): 111004.
[17] Zarei S, Talesh Bahrami HR, Saffari H (2018) Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: A theoretical study. Appl Therm Eng 137: 440-450.
[18] Chen L, Lian S, Yan R, Cheng Y, Huai X,  Chen, S (2009) N-octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam. J Therm Sci 18(2): 160-165.
[19] Baojin Q, Li Z, Hong X, Yan, S (2011) Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies. Exp Therm Fluid Sci 35(1): 211-218.
[20] Ucar IO, Erbil HY (2012) Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl Surf Sci 259: 515-523.
[21] Feng J, Qin Z, Yao S (2012) factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. Langmuir 28(14): 6067-6075.
[22] Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8): 988-994.
[23] Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40(0): 546-551.
[24] Talesh Bahrami HR, Zarei S, Saffari H  (2019) The effect of droplet morphology on the heat transfer performance of micro-/nanostructured surfaces in dropwise condensation.  J Therm Anal Calorim 138: 2979-2988.
[25] Baghel V, Sikarwar BS, Muralidhar K (2019) Modeling of heat transfer through a liquid droplet. Heat Mass Transfer 55(5): 1371-1385.
[26] Phadnis A,  Rykaczewski K (2017) The effect of marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces. Int J Heat Mass Transf 115: 148-158.
[27] Pradhan A, Krishnamurthy PK (2018) Visualization of motion inside droplets. In: Pradhan A., Krishnamurthy P. (Eds) Selected Topics in Photonics.  IITK Directions,Springer, Singapore.
[28] Brakke K (1992) The Surface Evolver. Exp Math 1(2): 141-165.
[28] Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281(2): 458-464.
[29] Ibrahim J, Masri MA, Veillas C, Celle F, Cioulachtjian S, Verrier I, Lefèvre F, Parriaux O, Jourlin Y (2017) Condensation phenomenon detection through surface plasmon resonance. Opt Express OE 25(20): 24189-24198.
[30] Huang JJ, Shu C, Chew YT (2009) Lattice boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21: 022103.
[31] Kannan R, Sivakumar D (2008) Drop impact process on a hydrophobic grooved surface. Colloid Surface A 317(1-3): 694-704.
[32] Van P. Carey (2007) Liquid vapor phase change phenomena  an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. CRC Press.
[33] صفاری ح، میرزاقیطاقی الف، رحیمی ع ( 2015) مدل‌سازی فشار مویینگی میکروسیالات در میکروساختارها با نرم افزار Surface Evolver. مجله مکانیک سازه­ها و شاره­ها 255-247 :(3)5.
[34] خلیلی الف, میرزاقیطاقی الف, صفاری ح (2016) مدلسازی عملکرد حرارتی سیال در تبخیرکننده با میکروساختارهای کروی و میکروستون مخروطی