Online health monitoring of marine structures using electromechanical impedance spectroscopy: A simulation approach

Authors

1 Faculty of Mechanical and Mechatronic Engineering

2 New Technologies Research Center (NTRC), Amirkabir University of Technology,

3 Associate Professor, New Technologies Research Center (NTRC), Amirkabir University of Technology

4 Professor, Mechanical Engineering Department, Amirkabir University of Technology

Abstract

Electromechanical impedance (EMI) spectroscopy is categorized as an online and real-time structural health monitoring methods. Taking advantage of the simultaneous actuation/sensing characteristics of piezoelectric patches to excite the host structure in high-frequency ranges, as well as recording the dynamic signature, enables the EMI to identify incipient damages. Marine structures are often exposed to a variety of environmental damage, including corrosion which necessitates the use of structural health monitoring methods in their maintenance programs. This study aims to investigate the possibility of using EMI spectroscopy to detect damage in marine structures. In this regard, a multi-physics finite element simulation was used to model the vibration of a submerged beam and extract the EMI spectrum. To validate the model, the first 5 eigenfrequencies of transverse vibration in water are compared with the existing experimental results. Next, the variation of the EMI of a pristine submerged was investigated at three different depths. Finally, a corrosion defect was applied to the beam to study the potential of damage detection in the fluid medium. The monotonic behavior of the root mean square deviation damage index indicates its adequacy for damage identification in submerged structures.

Keywords


[1] Ho M, El-Borgi S, Patil D, Song G (2020) Inspection and monitoring systems subsea pipelines: A review paper. Struct Health Monit 19(2): 606-645.
[2] Kaiser MJ (2018) The global offshore pipeline construction service market 2017–Part I. Ships Offshore Struct 13(1): 65-95.
[3] سالاری م، ناصرالاسلامی ا (1394) آنالیز مودال صفحه مستطیلی قائم نیمه‌مغروق در آب با شرایط تکیه‌گاهی مختلف. کنفرانس بین المللی یافته‌های نوین پژوهشی در مهندسی صنایع و مهندسی مکانیک.
[4] ناصرالاسلامی ا، سالاری م (1394) آنالیز مودال پوسته استوانه‌ای با شرایط مرزی و حالت‌های غوطه‌وری مختلف در تماس با سیالات تراکم ناپذیر. مجله مکانیک سازه‌ها و شاره‌ها 558-554 :(1)9.
[5] Anderson CM, LaBelle RP (2000) Update of comparative occurrence rates for offshore oil spills.  Spill Sci Technol Bull 6(5): 303-321.
[6] Liang C, Sun FP, Rogers CA (1997) Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer. JIMSS 8(4): 335-343.
[7] Wang X, Ehlers C, Neitzel M (1996) Electro-mechanical dynamic analysis of the piezoelectric stack. SmMaS 5(4): 492.
[8] Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Elsevier.
[9] Giurgiutiu V, Gresil M, Lin B, Cuc A, Shen Y (1012) Roman C, Predictive modeling of piezoelectric wafer active sensors interaction with high-frequency structural waves and vibration. AcMec 223(8): 1681-1691.
[10] Bhalla S, Naidu ASK, Ong CW, Soh CK (2002) Practical issues in the implementation of electromechanical impedance technique for NDE. in: Smart Structures, Devices, and Systems, International Society for Optics and Photonics 484-494.
[11] Sepehry N, Shamshirsaz M, Bastani A (2011)  Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature. Struct Health Monit 10(6): 573-585.
[12] Rajabi M, Shamshirsaz M, Naraghi M (2017)  Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment. Smart Struct Syst 19(4): 361-369.
[13] Sepehry N, Bakhtiari-Nejad F, Shamshirsaz M (2017)  Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates. JIMSS 28(18): 2473-2488.
[14] Yin XR, Li GQ, Xu W, Miao YY (2010) Analysis of beams with piezoelectric stack by using finite element method and impedance method. in: Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, IEEE, 554-558.
[15] Wang D, Song H, Zhu H (2015) Electromechanical impedance analysis on piezoelectric smart beam with a crack based on spectral element method. Math Probl Eng 4: 713501
[16] Sepehry N, Asadi S, Shamshirsaz M, Bakhtiari Nejad F (2018) A new model order reduction method based on global kernel k‐means clustering: Application in health monitoring of plate using L amb wave propagation and impedance method. Struct Contr Health Monit 25(9): e2211.
[17] Sepehry N, Shamshirsaz M, Bakhtiari Nejad F (2017) Low‐cost simulation using model order reduction in structural health monitoring: Application of balanced proper orthogonal decomposition. Struct Contr Health Monit 24(11): e1994.
[18] Green CP, Sader JE (2002) Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. JAP 92(10): 6262-6274.
[19] Dorignac J, Kalinowski A, Erramilli S, Mohanty P (2006) Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. PhRvL 96(18): 186105.
[20] Paul M, Clark M, Cross M (2006) The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation. Nanot 17(17): 4502.
[21] Paul M, Cross M (2004) Stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid. PhRvL 92(23): 235501.
[22] Chon JW, Mulvaney P, Sader JE (2000)  Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. JAP 87(8): 3978-3988.
[23] Chu W (1963) Technical report no. 2, DTMB, Contract NObs-86396 (X), Southwest Research Institute. San Antonio, Texas.