Experimental study of subsurface damage and material removal mechanisms in abrasive waterjet milling process of aluminum oxide ceramic

Authors

1 Department of mechanical engineering, faculty of engineering, university of maragheh, maragheh, iran.

2 Department of mechanical engineering, Faculty of engineering, University of Maragheh, Maragheh, Iran.

3 Faculty of Mechanical Engineering, University of Maragheh

4 university of maragheh

Abstract

Machining of hard and brittle materials such as aluminum oxide ceramic by conventional machining processes is very difficult due to the high hardness and wear resistance of this material, subsurface damages, poor surface quality and severe wear of the cutting tool. In this regard, abrasive water jet machining is widely used for machining of hard and brittle materials due to its excellent properties such as lack of thermal stresses, low machining forces, lack of mechanical contact between the specimen and cutting tool and compatibility with environment. Hence, in this research, abrasive water jet milling of aluminum oxide ceramic was experimentally investigated. In this respect, the influence of input parameters such as water jet pressure, feed rate, abrasive particles weight fraction and nozzle gap was evaluated on subsurface damages and material removal mechanisms (i.e. micro-cutting and micro-fracture). The obtained results indicate that the dominant material removal mechanism for aluminum oxide is micro-fracture, in which, material removal takes place by formation of micro-cracks and micro-craters beneath the abrasives indentation depth. Also, the results demonstrate that the probability of subsurface damages formation increases by increasing the jet pressure, decreasing feed rate, decreasing the nozzle gap and increasing the abrasives weight fraction. The statistical analysis of variance (ANOVA) revealed that the most significant parameters affecting subsurface damage depth are water jet pressure, weight fraction of abrasive particles, feed rate and nozzle gap, respectively. The contribution percentage of these parameters is 54.37%, 31.15%, 12.91% and 1.57%, respectively.

Keywords


[1] مهرور ع، باستی ع، جمالی ع (1396) بهینه­سازی       چندهدفه پارامترهای ماشینکاری الکتروشیمیایی با استفاده از روش رویه پاسخ. مجله علمی پژوهشی مکانیک سازه­ها و   شاره­ها 60-49 :(4)7.
[2] موسوی س ح، داودی ب (1396) تأثیرات خنک­کاری برودتی و روانکاری بر با نانوسیال بر زبری سطح و سایش ابزار در تراشکاری سوپر آلیاژ A286. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 85-73 :(4)7.
[3] فاضل ر، جلیلی م­م، ابوطالبی م­م (1396) تعیین نواحی پایداری برای ارتعاشات سنگ و قطعه کار در عملیات سنگ­زنی پلانچ با استفاده از مدل سه بعدی قطعه کار. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 82-67 :(30)7.
[4] امیرآبادی ح، فورگی نژاد ا، احمدی مجاوری م (1393) برشکاری آلیاژ تیتانیوم Ti6Al4V با فرآیند جت آب همراه ذرات ساینده و بهینه­سازی مشخصه­های هندسه شکاف برش. مجله مهندسی مکانیک مدرس 72-67 :(16)14.
[5] امیرآبادی ح، خلیلی ک، فورگی نژاد ا، آشوری ج          (1392) مدلسازی برش شیشه با جت آب همراه با ذرات ساینده توسط شبکه عصبی و بهینه­سازی زبری سطح با استفاده از الگوریتم کرم شب­تاب. مجله مهندسی مکانیک مدرس 123-134 :(8)13.
[6] Prabhuswamy NR, Srinivas S, Vasli A, Sheshashayan MV, Venkatesh S, Roongta Y (2018) Machinability studies of aluminium 6061 cut by abrasive water jet. Mater Today-Proc 5(1): 2865-2870.
[7] Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance   materials. Proc CIRP 1: 409-413.
[8] Kartal F, Yerlikaya Z, Gökkaya H (2017) Effects of machining parameters on surface roughness and macro surface characteristics when the machining of Al-6082 T6 alloy using AWJT. Mesurement 95: 216-222.
[9] Lehockáa D, Klichb J, Foldynab J, Hlocha S, Hvizdošc P, Fidesc M, Botkoa F, Cáracha J (2016) Surface integrity evaluation of brass CW614N after impact of acoustically excited pulsating water jet. Procedia Engineer 149: 236-244.
[10] Hejjaji A, Zitoune R, Crouzeix L, Roux SL,  Collombet SL (2017) Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear 376: 1356-1364.
[11] Putz M, Rennau A, Dix M (2018) High precision machining of hybrid layer composites by abrasive waterjet cutting. Proc Manuf 21: 583-590.
[12] Kumar Srivastava A, Naga A, Dixit AR, Tiwari S, Scucka J, Zelenak M, Hlochd S, Hlavacek P (2017) Surface integrity in tangential turning of hybrid MMC A359/B4C/Al2O3 by abrasive waterjet. J Manuf Process 28: 11-20.
[13] Liu D, Huangn C, Wang J, Zhu H, Yao P, Liu ZW (2014) Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram Int 40: 7899-7908.
[14] Kumara N, Shukla M (2011) Finite element analysis of multi-particle impact on erosion inabrasive waterjet machining of titanium alloy. J Comput Appl Math 236: 4600-4610.
[15] Liu D, Huang C, Zhu H, Wang J, Yao P (2016) Investigation on material   response to  ultrahigh velocity impacton ceramics by micro particle. Tribol Lett 64:43.
[16] Shahverdi H, Zohoor M, M.mousavi S (2011) Numerical simulation of abrasive water jet cutting process using the SPH and ALE methods. Int J Adv Des Manuf Tech 5:43-50.
[17] Feng Y, Jianming W, Feihong L (2012) Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting.  Int J Adv Manuf Tech 59: 193-200.
[18] Guo L, Deng S, Yang X (2016) Numerical simulation of abrasive water jet cutting chemical pipeline based on SPH coupled FEM. Chem Engineer Trans 51: 73-78.
[19] Gudimetal P, Yargadda PKDV (2007) Finite element analysis of the interaction between an AWJ particle and a polycrystalline alumina ceramic. J Achiev Mater Manuf Engineer 23: 7-14.
[20] Mieszala M, Torrubia PL, Axinte DA, schwiedrzik JJ, Guo Y, Mischler S, Mischler J, Philippe L (2017) Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments. J Mater Process Tech 247: 92-102.
[21] Mardi KB, Dixit AR, Mallick A, Pramanik A, Ballokova B, Hvizdos P, Foldyna J, Scucka J,  Hlavacek P, Zelenak M (2017) Surface integrity of Mg-based nanocomposite produced by abrasive water jet machining (AWJM). Mater Manuf Process 32(15): 1707-1714.
[23] Amirabadi H, Shafiei Alavijeh M (2017) Modeling and optimizing lapping process of 440C steel by Neural Network and Multi-objective particle swarm optimization algorithm. Modares Mechanical Engineering 17(8): 201-212.