Simulation of baffle effects on sloshing in model aircraft fuel tank

Authors

malek ashtar university

Abstract

While aircraft fuel systems are not generally regarded as the most glamorous feature of aircraft functionality, they are an essential feature of all aircraft. Their implementation and functional characteristics play a "critical role" in the design, certification and operational aspects of both military and civil aircraft. In this article, our concentration is to numerical analysis of baffle shape effects in aircraft fuel tank sloshing. Sloshing is meant the standing wave formed on the surface of a liquid when a tank partially filled with liquid is oscillated. In this study, sloshing analysis with VOF method in ANSYS FLUENT software. One fuel tank without baffle & four fuel tank with different baffle shapes analysed. Results with regard to tank filling, gravity acceration & tank geometry in tank 1 indicate baffle is necessary equipment for safe engine operation. In addition, results in the other tanks indicate position of baffle’s holes is important and affect in velocity of fluid in tanks. Finally, after analysis some recommandations suggested for future works.

Keywords

Main Subjects


[1] Ibrahim RA (2005) Liquid sloshing dynamics: Theory and applications. Cambridge University Press.
[2] Abramson HN, Silverman S (1966) Lateral sloshing in moving containers. NASA Special Publication, 106, 13.
[3] Cho J, Lee H, Ha S (2005) Finite element analysis of resonant sloshing response in 2-D baffled tank. J Sound Vib 288(4-5): 829-845.
[4] Hyun-Soo K, Young-Shin L (2008) Optimization design technique for reduction of sloshing by evolutionary methods. J Mech Sci Technol 22(1): 25-33.
[5] Panigrahy P, Saha U, Maity D (2009) Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng 36(3-4): 213-222.
[6] Wu CH, Chen BF (2009) Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. Ocean Eng 36(6-7): 500-510.
[7] Koli GC, Kulkarni VV (2010) Simulation of fluid sloshing in a tank. In Proceedings of the World Congress on Engineering 2: 2078-0958.
[8] Fries N, Behruzi P, Arndt T, Winter M, Netter G, Renner U, Astrium Space Transportation (2012) Modelling of fluid motion in spacecraft propellant tanks-Sloshing. In Space Propulsion 2012 Conference 7-10.
[9] Firouz-Abadi R, Borhan-Panah M (2013) Sloshing analysis of flowing liquid in 3D tank using boundary elements method. J Press Vess-T ASME 135(2): 021301.
[10] Hwang SC, et al. (2016) Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method. Ocean Eng 118: 227-241.
[11] Goudarzi MA, PN Danesh (2016) Numerical investigation of a vertically baffled rectangular tank under seismic excitation. J Fluid Struct 61: 450-460.
[12] Wang W, et al. (2016) A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks. Ocean Eng 111: 543-568.
]13[ قاسمی، ب، مرعشی ح، خوشنود ع، فتحعلی م (2018)  بررسی عملکرد دینامیکی وسیله نقلیه تانکردار متأثر از تلاطم سیال درون مخزن با استفاده از روش شبیه‌سازی چند فیزیکی. مکانیک سازه­ها و شاره­ها 202-183 :(1)8.
]14[ سررشته­داری ع، شاه مردان م­، قرایی ر (2012) شبیه سازی عددی و ارزیابی تجربی تلاطم سطح آزاد مایع تحت تحریک عرضی در یک مخزن مستطیلی. مکانیک سازه­ها و شاره­ها    95-89 :(1)1.
[15] Nema PK (2014) Computational study of sloshing behavior in 3-D rectangular tank with and without baffle under seismic excitation. Doctoral Dissertation.
[16] Shreeharsha HV, hivakumar SSG, Mallikarjun SG (2017) Simulation of sloshing in rigid rectangular tank and a typical aircraft drop tank. Journal of Aeronautics & Aerospace Engineering 6: 186.