Numerical and Experimental Investigation of Entropy Generation in a Supersonic Air Intake at Design Mach number

Authors

1 M.S. Student, Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Iran.

2 M.S. Graduate, Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Iran.

3 Assistant Professor, Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Iran.

Abstract

The flow quality inside a supersonic axisymmetric mixed compression air intake designed for the freestream Mach number of 2.0 has been investigated experimentally and numerically in this study. The numerical study was used to analyze the shock configurations inside the intake. The flow in a supersonic intake is always irreversible due to the shock waves and boundary layers. A useful tool for studing flow quality entering the engine is the investigation of entropy generation due to various factors. In this study, the accuracy of the numerical results is evaluated by the experimental data at first and then the entropy generation inside intake is studied for different back pressures. Results indicated that reduction of the pseudo-shock length results in the significant decrease of entropy generation. Furthermore, role of the pressure fluctuations in the entropy generation was examined and it is observed that pressure fluctuations could have a significant effect on the irreversibility of the flow. According to the results, by increasing the exit blockage ratio from 55% to 62.5%, the rate of entropy generation will be reduced by 33% due to the reduction of peuso-shock length, reduction in the flow separation at the end of diffuser and reduction of pressure fluctuations.

Keywords

Main Subjects


[1] Hemsch MJ, Nielsen JN (1986) Tactical missile aerodynamics. PROGR ASTRONAUT AERO AIAA 104(4).
[2] Oswatitsch (1944) Pressure recovery for Missiles with reaction Propulsion at high supersonic speed. Nasa TM 1140.
[3] Seddon J, Goldsmith EL (1985) Intake Aerodynamics. AIAA education series.
[4] سلطانی م، عابدی م، یونسی سپاهی ج (1394) بررسی تجربی ناپایداری‌های یک ورودی هوای مافوق‌ صوت با تراکم     ترکیبی. مجله علمی پژوهشی مهندسی مکانیک مدرس    100-93 :(4)15.
[5] Herrmann D, Triesch K (2006) Experimental Investigation of Isolated Inlets for High Agile Missiles. Aerosp Sci Technol 10(8): 659-667.
[6] Herrmann D, Triesch K, Gulhan A (2008) Experimental study of chin intakes for airbreathing missiles with high agility. J Propul Power 24 (2): 236-244.
[7]  Hirschen C, Herrmann D, Gulhan A (2007) Experimental investigations of the performance and unsteady behavior of a supersonic intake. J Propul Power 23(3): 566-574.
[8] Herrmann D, Siebe F, Gulhan A (2013) Pressure fluctuations (buzzing) and inlet performance of an airbreathing missile. J Propul Power 29(4): 839-848.
[9] Soltani MR, Sepahi Younsi J, Farahani M, Masoud A (2012) Numerical simulation and parametric study of a supersonic intake. P I MECH ENG G-J AER 227(3): 467-479.
[10] ابراهیمی ع، زارع چاوشی م (2016) بررسی عددی اثر عدد ماخ جریان آزاد بر عملکرد یک دهانه ورودی تراکم ترکیبی. مجله علمی پژوهشی مهندسی مکانیک مدرس 284-275 :7.
[11] Soltani MR, Daliri A, Sepahi-Younsi J (2016) Effects of shock wave/boundary-layer interaction on performance and stability of a mixed-compression inlet. Scientia Iranica 23(4): 1811-1825.
[12] Nakashima K, Saito T (2015) Performance Predictions of supersonic intakes with isentropic-compression forebody. 29th International Symposium on Shock Waves 2: 991-996.
[13] Dincer I, Cengel YA (2001) Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3(3): 116-149.
[14] Soltani MR, Farahani M (2012) Effects of angle of attack on the inletbuzz. J Propul Power 28(4): 747-757.
[15] Soltani MR, Sepahi-Younsi J (2015) Buzz cycle description in an axisymmetric mixed-compression air intake. AIAA J 54(3): 1040-1053.
[16] سپاهی یونسی جواد (1393) بررسی تجربی پیشگیری از پدیده باز (Buzz) در یک ورودی هوای فراصوتی. رساله‌ی دکتری، دانشگاه صنعتی شریف، دانشکده‌ی مهندسی هوافضا.
[17] Bejan A (2016) Advanced engineering thermodynamics. 2nd edn. John Wiley & Sons 66-69.
[18] Bejan A (2004) Convection heat transfer. 3rd edn. John Wiley & Sons 18.
[19] White FM (2011) Fluid mechanics. 7th edn. McGraw-hill, New Yourk.
[20] Liepmann HW, Roshko A (1957) Elements of gas dynamics. John Wiley & Sons, New Yourk.