Investigation of the effect of geometrical parameters on the out-of-plane displacement of a T-shaped piezoelectric microcantilever

Authors

1 University of Tehran

2 university of tehran

Abstract

Achieving to the higher out-of-plane displacement for a piezoelectric microcantilever enhances sensitivity and accuracy of the related microsensors and causes increase in displacement and performance of the related microactuators. In this paper, out-of-plane displacement of a piezoelectric microcantilever with T-Shaped cross section has been modeled using finite element method. With the aim of increase in out-of-plane displacement of this microcantilever, effect of the geometrical parameters on the out-of-plane displacement of the microcantilever has been investigated using the Taguchi method. Optimum levels of the piezoelectric microcantilever geometrical parameters to achieve the maximum out-of-plane displacement were obtained using analysis of the signal to noise ratios and order of the effect importance of geometrical parameters on the out-of-plane displacement was specified using analysis of variance (ANOVA). Among the studied parameters, length of the microcantilever (L) has the most influence on the out-of-plane displacement. The higher the length of the microcantilever,the more the out-of-plane displacement. Then, beam web depth (h) has the most effect on the out-of-plane displacement of the microcantilever. The less the web depth, the more the out-of-plane displacement of the microcantilever. Using optimum levels of the geometrical parameters, out-of-plane displacement of 296.3 µm was obtained that is about 2.3 times of the result of the latest research conducted in this field.

Keywords

Main Subjects


[1] Castille C, Dufour I, Lucat C (2010) Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media. Appl Phys Lett 96(15): 154102.
[2]  Lee JH, et al. (2005) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20(10): 2157-2162.
[3]  Lee C, Itoh T, Suga T (1996) Micromachined piezoelectric force sensors based on PZT thin films. IEEE T Ultrason Ferr 43(4): 553-559.
[4]  Mahameed R, et al. (2008) Dual-beam actuation of piezoelectric AlN RF MEMS switches monolithically integrated with AlN contour-mode resonators. J Micromech Microeng 18(10): 105011.
[5] طهماسبی پور م، سنگ چاپ م، طوفان م (1395) شبیه سازی یک سوئیچ میکروالکترومکانیکی بر پایه کانتیلور پیزوالکتریکی. کنفرانس بین المللی تحقیقات بنیادین در مهندسی برق، تهران.
[6] طهماسبی پور م، وفایی ع (1395) مدلسازی شتاب سنج پیزوالکتریکی MEMS به روش المان محدود. بیست و چهارمین کنفرانس مهندسی برق ایران، شیراز.
[7]  Tahmasebipour M, Vafaei A (2017) A highly sensitive three axis piezoelectric microaccelerometer for high bandwidth applications. Micro Nano 9(2): 111-120.
[8]  Tani M, et al. (2007) A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator. in Micro Electro Mechanical Systems,. MEMS. IEEE 20th International Conference on. 2007. IEEE.
[9]  Li Y, et al. (2006) Track-following control with active vibration damping of a PZT-actuated suspension dual-stage servo system. J Dyn Syst-T ASME 128(3): 568-576.
[10] Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2): 025009.
[11] طهماسبی پور م، سنگ چاپ م (1395) بهینه سازی یک سیستم الکترومکانیکی ذخیره انرژی بر پایه کانتیلور پیزوالکتریکی. کنفرانس بین المللی تحقیقات بنیادین در مهندسی برق، تهران.
[12] حسینی ر و فاتحی ناراب ه (1396) برداشت انرژی ارتعاشی با استفاده از تیر یکسر درگیر با دو لایه پیزوالکتریک. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 9-1 :(1)7.
[13] Furukawa T, Ishida K, Fukada E (1979) Piezoelectric properties in the composite systems of polymers and PZT ceramics. J Appl Phys 50(7): 4904-4912.
[14] Ajitsaria J, et al. (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16(2):  447.
[15] Suo Z, et al. (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4): 739-765.
[16] Kogan L, Hui CY, Molkov V (1996) Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material. Int J Solids Struct 33(19):2719-2737.
[17] Minne S, Manalis S, Quate C (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett 67(26): 3918-3920.
[18] Itoh T, Lee C, Suga T (1996) Deflection detection and feedback actuation using a self‐excited piezoelectric Pb (Zr, Ti) O3 microcantilever for dynamic scanning force microscopy. Appl Phys Lett 69(14): 2036-2038.
[19] Wang QM, Cross LE (1999) Tip deflection and blocking force of soft PZT‐based cantilever RAINBOW actuators. J Am Ceram Soc 82(1): 103-110.
[20] Shi Z, Xiang H, Spencer Jr B (2006) Exact analysis of multi-layer piezoelectric/composite cantilevers. Smart Mater Struct 15(5): 1447.
[21] Heinonen E, Juuti J, Jantunen H (2007) Characteristics of piezoelectric cantilevers embedded in LTCC. J Eur Ceram Soc 27(13): 4135-4138.
[22] Palosaari J, et al. (2009) Electromechanical performance of structurally graded monolithic piezoelectric actuator. J Electroceram 22(1-3): 156-162.
[23] Mateti K, et al. (2013) Fabrication and characterization of micromachined piezoelectric T-beam actuators. J Microelectromech S 22(1): 163-169.
[24] Kommepalli H, et al. (2011) Piezoelectric T-beam actuators. J Mech Design 133(6): 061003.
[25] Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers.
[26] Thomas A, Antony J (2005) A comparative analysis of the Taguchi and Shainin DOE techniques in an aerospace environment. Int J Prod Perform Manag 54(8): 658-678.
[27] Antony J, Jiju Antony F (2001) Teaching the Taguchi method to industrial engineers. Work Stud 50(4): 141-149.