Piezoelectric Configurations Effects on Acoustic Energy Density in an Ultrasonic Microcontainer for Preparing Nanoemulsion

Authors

1 Mechanical and Energy Systems Engineering Faculty Shahid Beheshti University Tehran, Iran

2 Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University Tehran, Iran

3 Renewable Energies Department, Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran.

Abstract

Nanoemulsions and their preparing technologies have become one of the most important fields in various industries such as chemical engineering, pharmaceutics and food. Ultrasonic irradiation is a method for preparing nanoemulsions, which is used in different scales. Microcontainers, by use of piezoelectric ceramic (abbr. piezo), are utilized to prepare nanoemulsions in some special researches. Irradiation of ultrasonic waves by these piezos in microcontainers is the most important part of nanoemulsion preparation process. Piezoes arrangement and their excite frequencies have a great effect on interacting waves and therefore, ultrasonic bath performance. In this paper, four configurations of cubic ultrasonic microcontainer have been analyzed by simulations in COMSOL Multiphysics software. Irradiation of ultrasonic waves performed at three frequencies 20, 200 and 300 kHz. In order to determine the best arrangement, the effect of adding piezoes in different frequencies and arrangements has been analyzed. It has been shown that adding two faced piezos, leads to increasing acoustic energy density logarithmically and this increment is more evident in lower frequencies.

Keywords

Main Subjects


[1]  Bera A, Mandal A (2015) Microemulsions: A novel approach to enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology 5(3): 255-268.
[2] طاهری م، فورگی نژاد ا، شیوا م، امام س م، حدادی ا (2016) ارزیابی تغییرات فرمول‏بندی لاستیک با اندازه گیری سرعت امواج فراصوتی. مکانیک سازه­ها و شاره­ها 294-258 :(2)63.   
[3] افتخاری شهری س ا، احمدی بروغنی س ی، خلیلی خ (2015) طراحی سیستم هیدروفرمینگ لوله همراه با ارتعاشات آلتراسونیک قالب.مکانیک سازه­ها و شاره­ها      148-135 :(1)5.
[4]  Choi J, Kim T, Kim H, Kim W (2016) Ultrasonics Sonochemistry Ultrasonic washing of textiles. Ultrason Sonochem 29: 563-567.
[5]  Anton N, Vandamme TF, Cedex FI (2009) The universality of low-energy nano-emulsification. Int J Pharmaceut 377(1-2): 142-147.
[6]  Chang WT, Chen YC, Lin RC, Cheng CC, Kao KS, Huang YC (2011) Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates. Curr Appl Phys 11(1): S333-S338.
[7]  Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35(2): 180-196.
[8]  Kaci M, Meziani S, Arab-Tehrany E, Gillet G, Desjardins-lavisse I, Desobry S (2014) Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion. Ultrason Sonochem 21(3): 1010-1017.
[9]  Kobayashi D, Hiwatashi R, Asakura Y, Matsumoto H, Shimada Y, Otake K, Shono A (2015) Effects of operational conditions on preparation of oil in water emulsion using ultrasound. Physcs Proc 70: 1043-1047.
[10] Hirai Y, Koshino M, Matsumura Y, Atobe M (2015) Synthesis of spherical polymer nanoparticles reflecting size of monomer droplets formed by tandem acoustic emulsification. Chem Lett 44(11): 1584-1585.
[11] Zhai, W., Liu, H. M., Hong, Z. Y., Xie, W. J., & Wei, B. (2017). A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds. Ultrasonics Sonochemistry, 34, 130–135.
[12] Dähnke SW, Keil FJ (1999) Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles. Chem Eng Sci 54(13-14): 2865-2872.
[13] Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14(5): 605-614.
[14] Sáez V, Frías-Ferrer A, Iniesta J, González-García J, Aldaz A, Riera E (2005) Chacterization of a 20 kHz sonoreactor. Part I: Analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12: 59065.
[15] Shchukin DG, Gorin DA, Möhwald H (2006) Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir 22(17): 7400-7404.
[16] Moheimani SOR, Fleming AJ (2006) Piezoelectric Transducers for vibration control and damping. Oxford University Press, Oxford, UK.
[17] COMSOL, COMSOL Multiphysics Modeling Guide.
[18] Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26(6): 443.
[19] Kwan JJ, Graham S, Myers R, Carlisle R, Stride E,  Coussios CC (2015) Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys Rev E 92(2): 23019.
[20] Harvey G, Gachagan A, Mutasa T (2014) Review of high-power ultrasound-industrial applications and measurement methods. IEEE T Ultrason Ferr 61(3): 481-495.
[21] Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6): 1624.
[22] Canselier JP, Delmas H, Wilhelm AM, Abismaïl B (2002) Ultrasound emulsification—An overview. J DISPER SCI TECHNOL 23(April 2015): 333-349.
[23] Harkin A, Nadim A, Kaper TJ (1999) On acoustic cavitation of slightly subcritical bubbles. Phys Fluids 11(2): 274-287.
[24] Nakabayashi K, Amemiya F, Fuchigami T, Machida K, Takeda S, Tamamitsu K, Atobe M (2011) Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chem Commun 47(20): 5765.
[25] Hirai Y, Nakabayashi K, Kojima M, Atobe M (2014) Size-controlled spherical polymer nanoparticles: Synthesis with tandem acoustic emulsification followed by soap-free emulsion polymerization and one-step fabrication of colloidal crystal films of various colors. Ultrason Sonochem 21(6): 1921-1927.
[26] Bhangu SK, Gupta S, Ashokkumar M (2017) Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrason Sonochem 34: 305-309.
[27] COMSOL, Acoustics Module Application Library, Piezoelectric Tonpilz Transducer.