Experimental Analysis of Elastic Dampers Effect on Reflected Waves from Plate Edges in Sound Localization

Authors

1 Assist. Prof., Mech. Eng., University of Gonabad, Gonabad, Iran

2 Assoc. Prof., Mech. Eng., Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this study elastic dampers are implemented to a plate edges to find the damper influence on reflected waves. Most of the published papers in the sound localization on plates were not considered the effect of reflected waves on the final localization. As an experimental example, the sound caused by ping pong ball impact on a Plexiglas plate is used. The effect of the elastic dampers on reflected waves are experimentally analyzed. For this purpose, a database is gathered using recorded signals by low sampling rate electret and pickup microphones. These sound’s signals were recorded for different dampers position on the plate edges. In the proposed method, first the data related to the propagated waves are detected and isolated from the whole signals which are sent by the microphone. Then the effect of elastic dampers on reflected waves are analyzed by a space feature extracted from the energy of recorded signals. Furthermore, in order to evaluate experiment results, statistical analysis are used. The results show reflected waves from edges are clearly influenced by all elastic dampers in different efficiency.

Keywords

Main Subjects


[1]  Hoseini Sabzevari SA, Moavenian M (2017) Sound localization in an anisotropic plate using electret microphones. Ultrasonics 73: 114-124.
[2] حسینی سبزواری س ا، معاونیان م (1394) تشخیص موقعیت دو بعدی منبع صدا  در صفحه شیشه­ای با نرخ داده برداری پایین. مجله مهندسی مکانیک مدرس 393-387 :(12)15.
[3] حسینی سبزواری س ا، معاونیان م (1394) تشخیص موقعیت منبع صدا در صفحات بوسیله حسگرهای صوتی ارزان قیمت. مجله مهندسی مکانیک مدرس 196-190 :(6)15.
[4]  Nakatani H, Kundu T, Takeda N (2014) Improving accuracy of acoustic source localization in anisotropic plates. Ultrasonics 54(7): 1776-1788.
[5]  Ratassepp M, Klauson A, Chati F, Léon F, Décultot D, Maze G, Fritzsche M (2015) Application of orthogonality-relation for the separation of Lamb modes at a plate edge: Numerical and experimental predictions. Ultrasonics 57(2): 90-95.
[6]  Park I, Jun Y, Lee U (2014) Lamb wave mode decomposition for structural health monitoring. Wave motion 51(2): 335-347.
[7]  Moreau L, Castaings M, Hosten B, Predoi M (2006) An orthogonality relation-based technique for post-processing finite element predictions of waves scattering in solid waveguides. J Acoust Soc Am 120(2): 611-620.
[8]  Morvan B, Wilkie-Chancellier N, Duflo H, Tinel A, Duclos J (2003) Lamb wave reflection at the free edge of a plate. J Acoust Soc Am 113(3): 1417-1425.
[9]  Lowe M, Diligent O (2002) Low-frequency reflection characteristics of the S0 Lamb wave from a rectangular notch in a plate J Acoust Soc AM 111(1): 64-74.
[10] Lowe M J, Cawley P, Kao J, Diligent O (2002) The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate. J Acoust Soc Am 112(6): 2612-2622.
[11] Alleyne D, Cawley P (1991) A two-dimensional Fourier transform method for the measurement of propagating multimode signals, J Acoust Soc Am 89(3): 1159-1168.
[12] Ahmad Z, Vivar-Perez J, Gabbert U (2013) Semi-analytical finite element method for modeling of lamb wave propagation. Aeronaut J 4(1): 21-33.
[13] Ahmad Z (2011) Numerical Simulations of Lamb waves in plates using a semi-analytical finite element method. Thesis, Magdeburg, Universität, Diss.
[14] Shen Y, Giurgiutiu V (2015) Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 58(3): 22-41.
[15] Hosseini S, Willberg C, Kharaghani A, Gabbert U (2014) Characterization of the guided wave propagation in simplified foam, honeycomb and hollow sphere structures. Compos Part B-Eng 56(2): 553-566.
[16] Hosseini S, Kharaghani A, Kirsch C, Gabbert U (2013) Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study. Compos Struct 97(4): 387-400.
[17] Hosseini S, Gabbert U (2013) Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: a parametric study. Compos Struct 97(3): 189-201.
[18] Hosseini S, Gabbert U (2013) Non-reflecting boundary condition for Lamb wave propagation problems in honeycomb and CFRP plates using dashpot elements. Compos Part B-Eng 54(1): 1-10.
[19] Graff K F (1975) Wave motion in elastic solids. Courier Dover Publications.
[20] Dieulesaint E, Royer D (1980) Elastic waves in solids: Applications to signal processing. J Wiley New York.
[21] مختاری ا، اوحدی ع، امین­داور ح (1394) بازسازی شکل عیب در ورق آلمینیومی توسط امواج هدایت شده­­ی لمب و استفاده از روش بازسازی چندضلعی در توموگرافی. مجله مهندسی مکانیک مدرس 246-239 :(4)15.
[22] Nakatani  H, Hajzargarbashi T, Ito K, Kundu T, Takeda N (2013) Locating point of impact on an anisotropic cylindrical surface using acoustic beamforming technique.   Key Eng Mat 558(2): 331-340.
[23] Koabaz M, Hajzargarbashi T, Kundu T, Deschamps M (2011) Locating the acoustic source in an anisotropic plate. Struct Health Monit 11(3): 315-323.
[24] Young HD (1962) Statistical treatment of experimental data. McGraw-Hill
[25] Zamani H, Moghiman M, Kianifar A (2015) Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM). Renew Energ 81(2): 753-759.