The impact analysis on airfield matting plate with considering the aircraft tyre deflection

Authors

1 Mechanical engineering department, Malek-Ashtar University of Technology, Shahinshahr, Iran

2 Mechanical Engineering Department, Malek-Ashtar Univesity of Technology, Shahinshahr, Iran.

3 Mechanical Engineering Department, Malek-Ashtar University of Technology, Shahinshahr, Iran.

Abstract

The main aim of this paper is the study of the strength of AM-2 matting plate made of Al6061-T6 under impact loads due to aircraft landing. In this study, the damping effects of the aircraft tire have been modeled by means of Mooney-Rivlin hyperelastic criterion. Effective parameters such as the landing vertical velocity at 1.5, 2, 2.5, and 3 m/s; the landing horizontal velocity at 42, 45, 50, 55, and 60 m/s; the CBR value of subgrade at 5, 10, 15, 20 and 25; and the thickness of subgrade at 160, 200, 300, and 500 mm, have been studied. The results showed that the stresses in matting plate increases with increasing both horizontal and vertical components of landing velocity, but decreases by increasing the CBR value. On the other hand, considering the subgrade thickness greater than 300mm has no significant effect on stresses. In order to have safe situation, the CBR value be 15 and greater has been recommended. Comparison of the results with those obtained without modeling the damping effects showed that the stresses be 15% greater in conditions without modeling damping of the tire.

Keywords

Main Subjects


[1] Rushing TW, Howard IL (2015) Prediction of soil deformation beneath temporary airfield matting systems based on full-scale testing. J Terramech 58(1): 1-9.
[2] Pickett G (1951) Analytical studies of landing mats for forward airfields. Final rep Corps Eng, U.S. Army Waterways Exp Station, MS Thesis.
[3] Harr ME, Rosner JC (1969) A theoretical study of landing mat behavior. Contract Rep. S-69-7, U.S. Army Waterways Exp Station, MS Thesis.
[4] Gartrell CA (2007) Full-scale instrumented testing and analysis of matting systems for airfield parking ramps and taxiways. Tech Rep ERDC/GSL TR-07-33, U.S. Army ERDC.
[5] Gartrell CA, Newman JK, Anderton GL (2009) Performance measurements of pavement matting systems by full-scale testing over differing soil strengths. J Mater Civ Eng 21(10): 12-19.
[6] Gonzales CR, Rushing TW (2010) Development of a new design methodology for structural airfield mats. Int J Pavement Res Tech 3(3): 102-109.
[7] Doyle JD, Howard IL, Gartrell CA, Anderton GL,  Newman JK, Berney ES (2014) Full-scale instrumented testing and three-dimensional modeling of airfield matting systems. Int J Geomech 14(2): 78-89.
[8] Garcia L, Howard L (2016) Full-scale instrumented testing of multiple airfield matting systems on soft soil to characterize permanent deformation. Def Tech Inf Cen No. AD1012038.
[9] Korunovic N, Trajanovic M, Stojkovic M (2007) FEA of Tyres Subjected to Static Loading. J Serb Soc Comp Mech 1(1): 87-98.
[10] قریشی ح، ابطحی م (1386) بررسی نظری و تجربی تحلیل جاپای یک تایر رادیال 14R65/185 با طرح رویه به کمک روش اجزای محدود. مجله علوم و تکنولوژی پلیمر 598-589 :(6)20.
[11] Ghoreishy MH (2006) Finite Element Analysis of the Steel-belted Radial Tyre with Tread Pattern under Contact Load. Iran Polym J 18(2): 667-674.
[12] Mines RA, McKown S, Birch RS (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: I—Experimental. Int J impact Eng 34(4): 627-646.
[13] Mines RA, McKown S, Birch RS (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates II—Numerical simulation using LS-DYNA. Int J impact Eng 34(4): 647-667.
[14] Gruber P, Sharp RS, Crocombe AD (2008) Friction and Camber Inflences on the Static Stiffness Properties of a Racing Tyre. P I Mech Eng 27(3): 1965-1976.
[15] Moisescu R, Fratila G (2011) Finite Element Model of Radial Truck Tyre for Analysis of Tyre - Road Contact Stress. Sci Bull Series D 20: 85-94.
[16] Wang W, Yan S, Zhao S (2013) Experimental Verifiation and Finite Element Modeling of Radial Truck Tire under Static Loading. J Reinf Plast Compos 24: 490-498.
[17] Guo H (2014) An investigation into the finite element modelling of an aircraft tyre and wheel assembly. CURVE is the Inst Repo Coventry Uni 12: 28-35.
[18] ملک­زاده الف، فرهنگ­دوست خ، حدیدی مود س (1392) بررسی اثر بارگذاری ضربه­ای در فرآیند رشد ترک در فولاد فورج EA4T. مجله مکانیک سازه­ها و شاره­ها 39-33 :(2)3.
[19] بابایی هـ، جمالی ع، میرزابابای مستوفی ت، اشرف طالش ح (1395) مطالعه تجربی و مدل­سازی ریاضی تغییر شکل ورق‌های مستطیلی تحت بار ضربه­ای. مجله مکانیک سازه­ها و شاره­ها 152-143 :(1)6.
[20] پاچناری م.ح، مظفری ع، شرعیات م (1395) تحلیل اجزای محدود پاسخ غیرخطی ضربه کم سرعت ورق کامپوزیتی ویسکوالاستیک به کمک تئوری لایه ای. مجله مکانیک سازه­ها و شاره­ها 108-97 :(3)6.
[21] قاجار ر، شرعیات م، حسینی ح (1394) تحلیل عددی الاستیسیته غیرخطی ضربه کم سرعت خارج از مرکز ورق ساندویچی مستطیلی با رویه های کامپوزیتی تحت پیش بار دوبعدی. مجله مکانیک سازه­ها و شاره­ها 99-87 :(1)5.
[22] Timothy W, Rushing A, Howard L, Brian Jordon J, Allison G (2016) Laboratory Characterization of Fatigue Performance of AM2 Aluminum Airfield Matting. American Society of Civil Engineers, McGraw-Hill, New York.
[23] Markmann G, Verron E (2006) Comparison of Hyperelastic models for rubber-like materials. Rubber Chem Tech 79(5):835-858.
[24] Hosseini A, Sahari B (2010) A review of constitutive models for rubber-like materials. American J Eng Appl Sci 27:886-892.