Local entropy generation analysis for a single slope solar still (Numerical investigations)

Authors

Abstract

In this research, the entropy generation is calculated locally in a single slope solar still by using computational fluid dynamics to improve the performance of this device. To benchmark the accuracy of the numerical method, the numerical results are compared with the experimental data obtained for a real solar still. The effects of aspect ratio (the ratio of length to the average height of the solar still) and the temperatures of glass cover and water surface on different types of entropy generation containing frictional, diffusive, and thermal entropy generations are investigated. Obtained results indicate that different types of entropy generation increase by increasing the temperatures of glass and water surfaces or increasing the aspect ratio. Moreover, the results showed that the aspect ratio affects considerably the performance of the solar still as it determines the distance between the evaporation (water surface) and condensation (glass surface) surfaces. Moreover, this parameter determines the time required for transferring the vapour from water surface to the glass surface. The regions around the water and glass surfaces have a high potential to generate the entropy and irreversibility. Finally, it is observed that the thermal entropy generation is dominant at all cases in comparison with two other types of entropy generation.

Keywords

Main Subjects


[1]  Dwivedi VK, Tiwari GN (2010) Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination 250(1): 49-55.
[2]SampathkumarK, Arjunan TV,  Pitchandi P, Senthilkumar P (2010) Active solar distillation-A detailed review. Renewable Sustainable Energy Rev 14(6): 1503-1526.
[3]  Esfahani JA, Rahbar N, Lavvaf M (2011) Utilization of thermoelectric cooling in a portable active solar still-An experimental study on winter days. Desalination 269(1): 198-205.
[4]  Morad MM, El-Maghawry HA, Wasfy KI (2015) Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 373: 1-9.
[5] Velmurugan V, Deenadayalan CK, Vinod H, Srithar K (2008) Desalination of effluent using fin type solarstill. Energy 33(11): 1719-1727.
[6] Kabeel AE, Abdelgaied M (2016) Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination 383: 22-28.
[7]  Sahota L, Tiwari GN (2016) Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 130: 260-272.
[8]  Rajaseenivasan T, Srithar K (2016) Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination 380: 66-74.
[9] کریمی پور آ، تیموری ح، افرند م (1393) شبیه سازی انتقال حرارت جابجایی توام آزاد و اجباری در یک محفظه شیبدار با درپوش متحرک با استفاده از روش شبکه­ی بولتزمن. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 182- 167 :­(2)4.
[10] علوی ن، ارمغانی ط، ایزد پناه الف (1395) انتقال حرارت جابجایی آزاد نانوسیال در محفظه L شکل بافلدار. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 321-311 :­(3)6.  
[11] Omri A, Orfi J, Nasrallah SB (2005) Natural convection effects in solar stills.Desalination 183(1-3): 173-178.
[12] Rahbar N, Esfahani JA (2012) Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study. Desalin Water Treat 50(1-3): 387-396.
[13] Rahbar N, Esfahani JA (2013) Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy 49: 289-297.
[14] Jahanshahi Javaran E, Khani AH, Mohammadi SMH (2016) Manufacturing and simulation of a solar humidification-dehumidificaاtion desalination system, Modares Mechanical Engineering 16(12): 248-239. (In Persian)
[15] Banakar A, Motevali A, Montazeri M, Mousavi Seyedi SR (2016) Comparison of dynamic and static neural networks in predicting performance of parabolic solar desalination. Modares Mechanical Engineering 16(12): 291-299. (In Persian)
[16] Amirahmadi S, Rashidi S, Esfahani JA (2016)   Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners. Appl Therm Eng 107: 533-543.
[17] زحمتکش الف (1393) تولید آنتروپی نانوسیالات در همرفت طبیعی در محفظه­های متخلخل مستطیل شکل. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 184-171 :(3)4. 
[18] Milani Shirvan K, Mamourian M (2015) Numerical investigation of effect and optimization of square cavity inclination angle and magnetic field on heat transfer and entropy generation. Modares Mechanical Engineering 15(8): 93-104. (In Persian)
[19] Clark JA (1990) The steady state performance of a solar still. Solar Energy 44(1): 43-49.
[20] Magherbi M, Abbassi H, Hidouri N, Brahim, AB (2006) second law analysis in convective heat and mass transfer. Entropy 8(1): 1-17.
[21] Bashi M, Rashidi S, Esfahani JA (2017) Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl Therm Eng 110: 1448-1461.
[22] Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York.
[23] Rashidi S, Esfahani JA, Rahbar N (2017) Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis. Solar Energy 153: 41-50.
[24] Shawaqfeh AT, Farid MM (1995) New development in the theory of heat and mass transfer in solar stills. Solar Energy 55(6): 527-535.