Optimal Control of Skid Steer Wheeled Mobile Robots by Analytical Approach

Authors

Abstract

This paper considers optimal control of skid steer wheeled mobile robots. Due to high energy consumption of skid steer wheeled mobile robots, which results from side slip of wheels in rotational maneuvers, additional studies on energy-efficient optimal control of skid steer robots seems mandatory. So, in this research, kinematic and dynamic modeling of skid steer mobile robot is presented in first. After that, electrical modeling of robot motors is expressed and an objective function, which is the robot energy consumption, introduces based on the system model. Then, to define and solve the optimal control problem, system’s Hamiltonian is formed and with the help of Hamilton’s principle, the optimal velocity profile of robot’s motion is calculated analytically to reduce energy consumption. Simulation results show the superiority of the proposed approach in this study and significant saving in energy consumption of robots in comparison to an optimal PD controller. Simulation results show the superiority of the proposed approach in this study and significant saving in energy consumption of robots in comparison to an optimal PD controller.

Keywords

Main Subjects


[1] Pentzer J, Brennan S, Reichard K (2014) On-Line estimation of vehicle motion and power model parameters for skid-steer robot energy use prediction. American Control Conference (ACC) Portland, 2786-2791.
[2] Pazderski D, Kozlowski K, Lawniczak M (2004) Practical stabilization of 4WD skid steering mobile robot. Proc. of the Fourth International Workshop on Robot Motion and Control, Puszczykowo, 175-180.
[3] Van der molen GM (1994) Modeling and control of a wheeled mobile robot. Control Eng Pract 2(1): 287-292.
[4] Takeuehi T, Nagia Y, Enomoto N (1988) Fuzzy control of a mobile robot for obstacle avoidance. Inf Sci 45(2): 231-248.
[5] Leroquais W, d’Andréa-Novel B (1999) Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: The unicycle case. Eur J Control 5(2-4): 293-311.
[6] Dixon WE, Jiang ZP, Dawson DM (2000) Global exponential set point of wheeled mobile robots: A lyapunov approach. Automatica 36(11): 1741-1746.
[7] Wu SF, Mei JS, Niu PY (2001) Path guidance and control of a guided wheeled mobile robot Control Eng Pract 9(19): 97-105.
[8] Sun S (2005) Designing approach on trajectory-tracking control of mobile robot. Rob Comput Integr Manuf 21(1): 81-85.
[9] Rehman FU, Ahmed MM (2007) Steering control algorithm for a class of wheeled mobile robots. IET Control Theory Appl 1(4): 915-924.
[10] Aylett R (2002) Robots: Bringing intelligent machines to life. Barrons’s Educational Inc., USA.
[11] Hemami A, Mehrabi MG, Cheng RM (1992) Synthesis for an optimal low for path tracking in mobile robots. Automatica 28(2): 383-387.
[12] Makimoto T, Sakai Y (2003) Evolution of low power electronics and its future applications. Proc. of the Int. on Low Power Electronics and Design, Seoul, 2-5.
[13] Spangelo I, Egeland O (1992) Generation of energy-optimal trajectories for an autonomous underwater vehicle. Proc. the IEEE Int. on Robotics and Automation 2107-2112.
[14] Trzynadlowski AM (1988) Energy optimization of a certain of incremental motion DC drives. IEEE Trans Ind Electron 35(1): 60-66.
[15] Wang Y, Chen C, Sung C (2013) Design of a weighted-pendulum type electromagnetic generator for harvesting energy from a rotating wheel. IEEE ASME Trans Mechatron 18(2): 754-763.
[16] Barili A, Ceresa M, Parisi C (1995) Energy-saving motion for an autonomous mobile robot. Proc. of the IEEE Int. on Industrial Electronics, Athens, 674-676.
[17] Weigui W, Huitang C, Peng-Yung W (1999) Optimal Motion planning for a wheeled mobile robot. Proc. of the IEEE Int. on Robotics and Automation, Detroit, 41-46.
[18] Kim CH, Kim BK (2007) Minimum-energy translational trajectory generation for differential-driven wheeled mobile robots. J Intell Robot Syst 49(4): 367-383.
[19] Duleba I, Sasiadek JZ (2003) Nonholonomic motion planning based on newton algorithm with energy optimization. IEEE Trans Control Syst Technol 11(3): 355-363.
[20] Yang J, Qu Z, Wang J, Conrad K (2010) Comparison of optimal solutions to real-time path planning for a mobile vehicle.  IEEE Trans Syst Man Cybern Pt A Syst Humans 40(4): 721-731.
[21] Pei SC, Horng JH (1998) Finding the optimal driving path of a car using the modified constrained distance transformation. IEEE Trans Rob Autom 14(5):663-670.
[22] Kim H, Kim BK (2014) Online minimum–energy trajectory planning and a straight–line path for three-wheeled omnidirectional mobile robots. IEEE Trans Ind Electron 61(9): 4771-4779.
[23] Liu S, Sun D (2014) Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE ASME Trans Mechatron 19(2): 401-411.
[24] Azimirad V, Shorakaei H (2014) Dual-hierarchical genetic–optimal: A new global path planning method for robots. J Manuf Syst 33(1): 139-148.
[25] Mushi SE, Lin Z, Allaire PE (2014) Design, construction, and modeling of a flexible rotor active magnetic bearing rig. IEEE ASME Trans Mechatron 17(6): 1170-1182.
[26] Kim H, Kim BK (2008) Minimum-energy translational trajectory planning for battery-powered three-wheeled omni-directional mobile robots. 10th Int. Conference on Control, Automation, Robotics and Vision, 1730-1735.
[27] Mei Y, Lu Y, Lee C, Hu Y (2006) Energy-efficient mobile robot exploration. Proc. IEEE Int. Conf. on Robotics and Automation, 505-511.
[28] Yi J, Wang H, Zhang J, Song D, Jayasuriya S, Liu J (2009) Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Trans Robot 25(5): 1087-1097.
[29] Wang H, Li B, Liu J, Yang Y, Zhang Y (2011) Dynamic modeling and analysis of wheel skid steered mobile robots with the different angular velocities of four wheels. 30th Chinese Control Conference (CCC), 3919-3942.
[30] Kozlowski K, Pazderski D, Rudas I, Tar J (2004) Modeling and control of a 4-wheel skid-steering mobile robot: From theory to practice. Int J Appl Math Comput Sci 14(4): 477-496.
[31] Wang D, Low C (2008) Modeling and analysis of skidding and slipping in wheeled mobile robots; Design and perspective. IEEE Trans Robot 24(3): 676-687.
[32] نراقی م، شکوهی دولت‌آبادی ن (۱۳۸۴) سینماتیک و کنترل یک ربات سیار چهار چرخ فرمانش لغزشی در تعقیب مسیر هندسی. سیزدهمین کنفرانس سالانه مهندسی مکانیک، اصفهان، دانشگاه صنعتی اصفهان.
[33] نظری و، نراقی م (1388) کنترل فازی-تطبیقی یک ربات سیار فرمانش لغزشی برای دنبال کردن مسیر. هفدهمین کنفرانس سالانه مهندسی مکانیک (ISME 2009)، تهران، دانشگاه تهران.
[34] محمدپور ا، نراقی م (1389) پایدارسازی مقاوم ربات‌های سیار فرمانش لغزشی با در نظر گرفتن اثرات لغزش چرخ‌ها. نشریه پژوهشی مهندسی مکانیک ایران 28-6 :(2)12.