[1] Shanazari, H., Liaghat, G. H., Hadavinia, H., & Aboutorabi, A. (2017). Analytical investigation of high-velocity impact on hybrid unidirectional/woven composite panels. J. Thermoplastic Compo. Mat., 30(4), 545-563.
[2] Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121.
[3] Karger-Kocsis, J. (Ed.). (2012). Polypropylene structure, blends and composites: Volume 3 composites. Springer Science & Business Media.
[4] Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181-200.
[5] Dorey, G., Sidey, G. R., & Hutchings, J. (1978). Impact properties of carbon fibre/Kevlar 49 fibre hydrid composites. Composites, 9(1), 25-32.
[6] Briscoe, B. J., & Motamedi, F. (1992). The ballistic impact characteristics of aramid fabrics: the influence of interface friction. Wear, 158(1-2), 229-247.
[7] Rebouillat, S. (1998). Tribological properties of woven para-aramid fabrics and their constituent yarns. J. Mat. Sci., 33(13), 3293-3301.
[8] Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite structures, 61(1-2), 161-173.
[9] Da Silva Junior, J. E. L., Paciornik, S., & d’Almeida, J. R. M. (2004). Evaluation of the effect of the ballistic damaged area on the residual impact strength and tensile stiffness of glass-fabric composite materials. Composite Structures, 64(1), 123-127.
[10] Zeng, X. S., Tan, V. B. C., & Shim, V. P. W. (2006). Modelling inter‐yarn friction in woven fabric armour. Int. J. Numerical Methods Eng., 66(8), 1309-1330.
[11] Dong, Z., & Sun, C. T. (2009). Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composites Part A: Applied science and manufacturing, 40(12), 1863-1869.
[12] Chen, W., Qian, X. M., He, X. Q., Liu, Z. Y., & Liu, J. P. (2012). Surface modification of Kevlar by grafting carbon nanotubes. J. Appl. Polym.Sci., 123(4), 1983-1990.
[13] Pirmohammad, N., Liaght, G. H., & Pol, M. H. (2014). Experimental investigation on ballistic behavior of sandwich panels made of honeycomb core. Modares Mechanical Engineering, 14(4), 21-26.
[14] Bandaru, A. K., Vetiyatil, L., & Ahmad, S. (2015). The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Composites Part B: Engineering, 76, 300-319.
[15] Bandaru, A. K., Patel, S., Sachan, Y., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2016). Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 90, 642-652.
[16] Yang, Y., & Chen, X. (2017). Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact. Textile Research Journal, 87(20), 2475-2486.
[17] Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464-473.
[18] Asemani, S. S., Liaghat, G., Ahmadi, H., Anani, Y., & Khodadadi, A. (2021). Comparison of penetration process of 2-layer elastomeric composite with thermoset composite using energy absorption equations. Amirkabir J. Mech. Eng., 53(6), 3657-3672.
[19] Amirian, A., Rahmani, H., & Moeinkhah, H. (2022). An experimental and numerical study of epoxy-based Kevlar-basalt hybrid composites under high velocity impact. J. Indust. Textiles, 51(1_suppl), 804S-821S.
[20] Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Aisyah, H. A., Rafiqah, S. A., ... & Sapuan, S. M. (2021). A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers, 13(4), 646.
[21] Liu, A., Chen, Y., Hu, J., Wang, B., & Ma, L. (2022). Low‐velocity impact damage and compression after impact behavior of CF/PEEK thermoplastic composite laminates. Polymer Composites, 43(11), 8136-8151.
[22] Andrew, J. J., Srinivasan, S. M., Arockiarajan, A., & Dhakal, H. N. (2019). Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 224, 111007.
[23] Ramasamy, M., Daniel, A. A., Nithya, M., Kumar, S. S., & Pugazhenthi, R. (2021). Characterization of natural–Synthetic fiber reinforced epoxy based composite–Hybridization of kenaf fiber and kevlar fiber. Materials Today: Proceedings, 37, 1699-1705.
[24] Stopforth, R., & Adali, S. (2019). Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles. Defence Technology, 15(2), 186-192.
[25] Babaei, H., Jamali, A., Mirzababaie Mostofi, T., & Ashraf Talesh, H. (2016). Experimental Study and Mathematical Modeling of Deformation of Rectangular Plates under the Impact Load. J. Solid and Fluid Mech., 6(1), 143-152.
[26] Keane, M. P., Lingenfelter, A. J., Walker, M., & Hill, R. R. (2020). Ballistic Limit Shot Dependency Testing in Composite Materials. In AIAA Scitech 2020 Forum (p. 1218).
[27] Gholizadeh, S. (2019). A review of impact behaviour in composite materials. Int. J. Mech. Prod. Eng., 7(3), 2320-2092.
[28] Zal, V., Moslemi Naeini, H., Bahramian, A. R., Behravesh, A. H., & Abbaszadeh, B. (2018). Investigation and analysis of glass fabric/PVC composite laminates processing parameters. Science and Engineering of Composite Materials, 25(3), 529-540.
[29] Zimmermann, N., & Wang, P. H. (2020). A review of failure modes and fracture analysis of aircraft composite materials. Engineering failure analysis, 115, 104692.