Experimental investigation of ballistic limit and energy absorption in hybrid composites made of Kevlar and Ingra fibers

Authors

1 M.Sc. of Mech. Eng., Sistan and Baluchestan Univ., Zahedan, Iran

2 Assistant Professor, Mechanical Engineering Department, Sistan And Baluchestan University,, Zahedan, Iran

10.22044/jsfm.2025.14979.3885

Abstract

In this research, the effect of high velocity impact on Kevlar/Innegra hybrid composites and the effect of adding Innegra fibers on the ballistic properties of Kevlar/epoxy samples have been studied experimentally. For this purpose, 6 sets of samples with different configurations of Kevlar and Innegra fabric fibers were made in 5 layers. Then, the high velocity impact test (gas gun) was performed on the samples at two velocities of 103 and 136 m/s (higher than the ballistic limit speed) and at the energy level of 37 and 64 joules, respectively, by the projectile of conical head cylinders. To find the most optimal configuration; With the help of energy relationships, the ballistic limit and energy absorption rate were calculated for each sample separately and it was observed that the use of Innegra fibers with IKIKI configuration increased energy absorption by 50.57% compared to the Kevlar/epoxy sample. Further, due to the non-uniformity of thickness and mass among the manufactured samples, the specific energy absorption rate was calculated for Kevlar/Innegra hybrids, and the values obtained for KIKIK and IKIKI samples show an increase of 61.5% and 23%, respectively. The above results show the high effect of using Innegra fibers in increasing the energy absorption of the Kevlar/epoxy sample.

Keywords

Main Subjects


[1] Shanazari, H., Liaghat, G. H., Hadavinia, H., & Aboutorabi, A. (2017). Analytical investigation of high-velocity impact on hybrid unidirectional/woven composite panels. J. Thermoplastic Compo. Mat., 30(4), 545-563.‏
 [2] Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121.‏
[3] Karger-Kocsis, J. (Ed.). (2012). Polypropylene structure, blends and composites: Volume 3 composites. Springer Science & Business Media.‏
[4] Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181-200.
[5] Dorey, G., Sidey, G. R., & Hutchings, J. (1978). Impact properties of carbon fibre/Kevlar 49 fibre hydrid composites. Composites, 9(1), 25-32.‏
[6] Briscoe, B. J., & Motamedi, F. (1992). The ballistic impact characteristics of aramid fabrics: the influence of interface friction. Wear, 158(1-2), 229-247.‏
[7] Rebouillat, S. (1998). Tribological properties of woven para-aramid fabrics and their constituent yarns. J. Mat. Sci., 33(13), 3293-3301.‏
 [8] Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite structures, 61(1-2), 161-173.
[9]  Da Silva Junior, J. E. L., Paciornik, S., & d’Almeida, J. R. M. (2004). Evaluation of the effect of the ballistic damaged area on the residual impact strength and tensile stiffness of glass-fabric composite materials. Composite Structures, 64(1), 123-127.‏
[10] Zeng, X. S., Tan, V. B. C., & Shim, V. P. W. (2006). Modelling inter‐yarn friction in woven fabric armour. Int. J. Numerical Methods Eng., 66(8), 1309-1330.‏
[11] Dong, Z., & Sun, C. T. (2009). Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composites Part A: Applied science and manufacturing, 40(12), 1863-1869.‏
[12] Chen, W., Qian, X. M., He, X. Q., Liu, Z. Y., & Liu, J. P. (2012). Surface modification of Kevlar by grafting carbon nanotubes. J. Appl. Polym.Sci., 123(4), 1983-1990.‏
[13] Pirmohammad, N., Liaght, G. H., & Pol, M. H. (2014). Experimental investigation on ballistic behavior of sandwich panels made of honeycomb core. Modares Mechanical Engineering, 14(4), 21-26.‏
[14] Bandaru, A. K., Vetiyatil, L., & Ahmad, S. (2015). The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Composites Part B: Engineering, 76, 300-319.‏
 [15] Bandaru, A. K., Patel, S., Sachan, Y., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2016). Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 90, 642-652.‏
[16] Yang, Y., & Chen, X. (2017). Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact. Textile Research Journal, 87(20), 2475-2486.‏
[17] Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464-473.‏
[18] Asemani, S. S., Liaghat, G., Ahmadi, H., Anani, Y., & Khodadadi, A. (2021). Comparison of penetration process of 2-layer elastomeric composite with thermoset composite using energy absorption equations. Amirkabir J. Mech. Eng., 53(6), 3657-3672.‏
[19] Amirian, A., Rahmani, H., & Moeinkhah, H. (2022). An experimental and numerical study of epoxy-based Kevlar-basalt hybrid composites under high velocity impact. J. Indust. Textiles, 51(1_suppl), 804S-821S.‏
 [20] Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Aisyah, H. A., Rafiqah, S. A., ... & Sapuan, S. M. (2021). A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers, 13(4), 646. ‏
 [21] Liu, A., Chen, Y., Hu, J., Wang, B., & Ma, L. (2022). Low‐velocity impact damage and compression after impact behavior of CF/PEEK thermoplastic composite laminates. Polymer Composites, 43(11), 8136-8151.‏
[22] Andrew, J. J., Srinivasan, S. M., Arockiarajan, A., & Dhakal, H. N. (2019). Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 224, 111007.‏
[23] Ramasamy, M., Daniel, A. A., Nithya, M., Kumar, S. S., & Pugazhenthi, R. (2021). Characterization of natural–Synthetic fiber reinforced epoxy based composite–Hybridization of kenaf fiber and kevlar fiber. Materials Today: Proceedings, 37, 1699-1705.‏
[24] Stopforth, R., & Adali, S. (2019). Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles. Defence Technology, 15(2), 186-192.‏
  [25] Babaei, H., Jamali, A., Mirzababaie Mostofi, T., & Ashraf Talesh, H. (2016). Experimental Study and Mathematical Modeling of Deformation of Rectangular Plates under the Impact Load. J. Solid and Fluid Mech., 6(1), 143-152.‏
[26]  Keane, M. P., Lingenfelter, A. J., Walker, M., & Hill, R. R. (2020). Ballistic Limit Shot Dependency Testing in Composite Materials. In AIAA Scitech 2020 Forum (p. 1218).‏
[27] Gholizadeh, S. (2019). A review of impact behaviour in composite materials. Int. J. Mech. Prod. Eng., 7(3), 2320-2092.‏
[28] Zal, V., Moslemi Naeini, H., Bahramian, A. R., Behravesh, A. H., & Abbaszadeh, B. (2018). Investigation and analysis of glass fabric/PVC composite laminates processing parameters. Science and Engineering of Composite Materials, 25(3), 529-540.‏
[29] Zimmermann, N., & Wang, P. H. (2020). A review of failure modes and fracture analysis of aircraft composite materials. Engineering failure analysis, 115, 104692.‏