[1] M. Li, E.B. Myers, H.X. Tang, S.J. Aldridge, H.C. McCaig, J.J. Whiting, R.J. Simonson, N.S. Lewis, M.L. Roukes, (2010) Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis, Nano Lett. 10: 3899–3903.
                                                                                                                [2] S. Schmid, M. Kurek, A. Boisen, (2013) Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators, in: Micro-and Nanotechnol. Sensors, Syst. Appl. V, 2013: p. 872525.
                                                                                                                [3] B. Qiu, Y. Zhang, K. Akahane, N. Nagai, K. Hirakawa, (2020) Effect of beam deflection on the thermal responsivity of GaAs-based doubly clamped microelectromechanical beam resonators, Appl. Phys. Lett. 117: 203503.
                                                                                                                [4] A. Gharehkhani, E. Abbaspour-Sani, (2018) Study of Static Deflection and Instability Voltage of Phase Shifter Micro-Switches Using a Nonlinear Beam Model and Non-localized elasticity theory, Modares Mech. Eng. 17: 93–100.
                                                                                                                [5] R.A. Khalkhali, A. Norouzzadeh, R. Gholami, (2015) Forced vibration analysis of conveying fluid carbon nanotube resting on elastic foundation based on modified couple stress theory, Mme. 15: 27–34.
                                                                                                                [6] همدانی س.، , حسینی م. (1399)، تحلیل ارتعاشات غیرخطی میکروتیرهای اویلر-برنولی چرخان تحت بار با استفاده از نظریه گرادیان کرنش, مکانیک سازه ها و شاره ها، 10 (3) صفحه 193–181.
                                                                                                                [7] مامندی ا.، مهرابی ع. (1400)، بررسی دینامیکی میکروتیر حاوی جریان سیال بر روی بستر ویسکوالاستیک-پسترناک و تحت بار محوری با استفاده از نظریه تنش کوپل اصلاح شده, مکانیک سازه ها و شاره ها، 11 (1) صفحه 273–257.
                                                                                                                [8] P. Sadeghi, A. Demir, L.G. Villanueva, H. Kähler, (2020) S. Schmid, Frequency fluctuations in nanomechanical silicon nitride string resonators, Phys. Rev. B. 102: 214106.
                                                                                                                [9]  شیخلو م.، دلبری ع.، صباحی ع.، عبدالملکی ا. (1401)، تحلیل ارتعاشات نانوصفحههای دایرهای تحت تحریک الکترواستاتیک غیرخطی با لحاظ اثرات سطح و اندازه مکانیک سازه ها و شاره ها، 12 (5) صفحه 146–133.
                                                                                                                [10] A.M. Eriksson, D. Midtvedt, A. Croy, A. Isacsson, (2013) Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators, Nanotechnology. 24.
                                                                                                                [11] J.L. Lopez, J. Verd, A. Uranga, G. Murillo, J. Giner, E. Marigó, F. Torres, G. Abadal, N. Barniol, (2009) VHF band-pass filter based on a single CMOS-MEMS doubleended tuning fork resonator, Procedia Chem. 1: 1131–1134.
                                                                                                                [12] C.T.-C. Nguyen, (2007) MEMS technology for timing and frequency control, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54: 251–270.
                                                                                                                [13]         M. Zalalutdinov, B. Ilic, D. Czaplewski, A. Zehnder, H.G. Craighead, J.M. Parpia, (2000) Frequency-tunable micromechanical oscillator, Appl. Phys. Lett. 77: 3287–3289.
                                                                                                                [14] A.K. Huttel, G.A. Steele, B. Witkamp, M. Poot, L.P. Kouwenhoven, H.S.J. van der Zant, (2009) Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett. 9: 2547–2552.
                                                                                                                [15] S.L. De Bonis, C. Urgell, W. Yang, C. Samanta, A. Noury, J. Vergara-Cruz, Q. Dong, Y. Jin, A. Bachtold, (2018) Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators, Nano Lett. 18: 5324–5328.
                                                                                                                [16] S.X.P. Su, H.S. Yang, A.M. Agogino, (2005) A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology, IEEE Sens. J. 5: 1214–1222.
                                                                                                                [17] R. Katti, H.S. Arora, O. Saira, K. Schwab, M. Roukes, S. Nadj-Perge, Resonant Temperature Readout of Monolayer Graphene, Bull. Am. Phys. Soc. (2021).
                                                                                                                [18] M. Kline, Frequency modulated gyroscopes, UC Berkeley, 2013.
                                                                                                                [19] P.K. Pattnaik, B. Vijayaaditya, T. Srinivas, A. Selvarajan, (2005) Optical MEMS pressure and vibration sensors using integrated optical ring resonators, in: SENSORS, 2005 IEEE: pp. 4--pp.
                                                                                                                [20] E. Benes, R. Thalhammer, M. Groschl, H. Nowotny, S. Jary, (2003) Viscosity sensor based on a symmetric dual quartz thickness shear resonator, in: IEEE Int. Freq. Control Symp. PDA Exhib. Jointly with 17th Eur. Freq. Time Forum, 2003. Proc. 2003: pp. 1048–1054.
                                                                                                                [21] L. Matsiev, 3I-2 measurements of liquid density and viscosity with flexural resonators using noise as an excitation source, in: 2006 IEEE Ultrason. Symp., 2006: pp. 884–887.
                                                                                                                [22] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, (2012) A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol. 7: 301–304
                                                                                                                [23] F.R. Braakman, M. Poggio, Force sensing with nanowire cantilevers, ArXiv. 30 (2019) 332001.
                                                                                                                [24] N. Jaber, S. Ilyas, O. Shekhah, M. Eddaoudi, M.I. Younis, (2018) Multimode MEMS resonator for simultaneous sensing of vapor concentration and temperature, IEEE Sens. J. 18: 10145–10153
                                                                                                                [25] P. Stupar, O. Opota, G. Longo, G. Prod’hom, G. Dietler, G. Greub, S. Kasas, (2017) Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections, Clin. Microbiol. Infect. 23: 400–405.
                                                                                                                [26] G. Wu, J. Xu, E.J. Ng, W. Chen, (2020) MEMS Resonators for Frequency Reference and Timing Applications, J. Microelectromechanical Syst. 29: 1137–1166.
                                                                                                                [27] H. Askari, H. Jamshidifar, B. Fidan, (2017) High resolution mass identification using nonlinear vibrations of nanoplates, Meas. J. Int. Meas. Confed. 101: 166–174.
                                                                                                                [28] N. Kacem, J. Arcamone, F. Perez-Murano, S. Hentz, (2010) Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications, J. Micromechanics Microengineering. 20.
                                                                                                                [29] C. Lan, W. Qin, W. Deng, (2015) Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam, Appl. Phys. Lett. 107.
                                                                                                                [30] J.F. Rhoads, S.W. Shaw, K.L. Turner, R. Baskaran, (2005) Tunable microelectromechanical filters that exploit parametric resonance, J. Vib. Acoust. Trans. ASME. 127: 423–430.
                                                                                                                [31] R. Potekin, S. Dharmasena, H. Keum, X. Jiang, J. Lee, S. Kim, L.A. Bergman, A.F. Vakakis, H. Cho, (2018) Multi-frequency atomic force microscopy based on enhanced internal resonance of an inner-paddled cantilever, Sensors Actuators A Phys. 273: 206–220.
                                                                                                                [32] R. Potekin, S. Dharmasena, D.M. McFarland, L.A. Bergman, A.F. Vakakis, H. Cho, (2017) Cantilever dynamics in higher-harmonic atomic force microscopy for enhanced material characterization, Int. J. Solids Struct. 110: 332–339.
                                                                                                                [33] H.M. Ouakad, H.M. Sedighi, M.I. Younis, (2017) One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches, J. Comput. Nonlinear Dyn. 12.
                                                                                                                [34] A.H. Ramini, A.Z. Hajjaj, M.I. Younis, (2016) Tunable resonators for nonlinear modal interactions, Sci. Rep. 6: 1–9.
                                                                                                                [35] C. Samanta, P.R. Yasasvi Gangavarapu, A.K. Naik, (2015) Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system, Appl. Phys. Lett. 107.
                                                                                                                [36] A. Eichler, M. Del Álamo Ruiz, J.A. Plaza, A. Bachtold, (2012) Strong coupling between mechanical modes in a nanotube resonator, Phys. Rev. Lett. 109: 1–5.
                                                                                                                [37] W.G. Conley, A. Raman, C.M. Krousgrill, S. Mohammadi, (2008) Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators, Nano Lett. 8: 1590–1595.
                                                                                                                [38] ابراهیمی ر. (1401) تحلیل غیرخطی ارتعاشات کوپل شده عرضی-طولی در نانوتشدیدگرها تحت نیروی الکترواستاتیک, مدل سازی در مهندسی. 20 (70) صفحه 60-51.
                                                                                                                [39] D. Antonio, D.H. Zanette, D. López, (2012) Frequency stabilization in nonlinear micromechanical oscillators, Nat. Commun. 3.
                                                                                                                 
                                                                                                                [40] C. Chen, D.H. Zanette, D.A. Czaplewski, S. Shaw, D. López, (2017) Direct observation of coherent energy transfer in nonlinear micromechanical oscillators, Nat. Commun. 8: 1–7.
                                                                                                                [41] R. Ebrahimi, (2022) Chaos in coupled lateral-longitudinal vibration of electrostatically actuated microresonators, Chaos, Solitons \& Fractals. 156: 111828.
                                                                                                                [42] J. Güttinger, A. Noury, P. Weber, A.M. Eriksson, C. Lagoin, J. Moser, C. Eichler, A. Wallraff, A. Isacsson, A. Bachtold, (2017) Energy-dependent path of dissipation in nanomechanical resonators, Nat. Nanotechnol. 12: 631–636.
                                                                                                                [43] L.B. Sharos, A. Raman, S. Crittenden, R. Reifenberger, (2004) Enhanced mass sensing using torsional and lateral resonances in microcantilevers, Appl. Phys. Lett. 84: 4638–4640.
                                                                                                                [44] O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces, Nat. Nanotechnol. 2: 507–514.
                                                                                                                [45] B.E. DeMartini, J.F. Rhoads, M.A. Zielke, K.G. Owen, S.W. Shaw, K.L. Turner, (2008) A single input-single output coupled microresonator array for the detection and identification of multiple analytes, Appl. Phys. Lett. 93: 1–4.
                                                                                                                [46] N. Ghaemi, A. Nikoobin, M.R. Ashory, (2022) A comprehensive categorization of micro/nanomechanical resonators and their practical applications from an engineering perspective: a review, Adv. Electron. Mater. 8: 2200229.
                                                                                                                [47] C.H. Ho, R.A. Scott, J.G. Eisley, (1975) Non-planar, non-linear oscillations of a beam-I. Forced motions, Int. J. Non. Linear. Mech. 10: 113–127.
                                                                                                                [48] S. Schmid, L.G. Villanueva, M.L. Roukes, (2016) Fundamentals of nanomechanical resonators,.
                                                                                                                [49] V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen, (2004) A tunable carbon nanotube electromechanical oscillator, Nature. 431: 284–287.