[1] Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2015) Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renew. Sust. Energ. Rev. 49: 444-69
                                                                                                                [2] Joule JP (1861) VIII. On the surface-condensation of steam. Philos. Trans. Royal Soc. 151: 133-60.
                                                                                                                [3] Bergles AE (2011) Recent developments in enhanced heat transfer. Heat Mass Transf  47(8):1001-8.
                                                                                                                [4] Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., ... & Tadrist, L (2013) An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int. J. Heat Mass Transf. 61: 505-524.
                                                                                                                [5] Khan, N., Pinjala, D., & Toh, K. C. (2004) Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: a review. Proc 6th Electronics Packaging Technology Conference (EPTC 2004)(IEEE Cat. No. 04EX971): 273-280.
                                                                                                                [6] Kakaç, S., & Pramuanjaroenkij, A (2009) Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13-14): 3187-3196.
                                                                                                                [7] Webb, R. L., & Kim, N. Y (2005) Enhanced heat transfer. Taylor and Francis, NY.
                                                                                                                [8] Hosseini, S., Aghebatandish, S., Dadvand, A., & Khoo, B. C (2021) An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing. Chem. Eng. J. 405: 126652.
                                                                                                                [9] Fiebig, M (1998) Vortices, generators and heat transfer. Chem. Eng. Res. Des.            76(2): 108-123.
                                                                                                                [10] Awais, M., & Bhuiyan, A. A (2018) Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Therm. Sci. Eng. Prog. 5: 524-545.
                                                                                                                [11] Lambert, R. A., & Rangel, R. H (2010) The role of elastic flap deformation on fluid mixing in a microchannel. Phys. Fluids 22(5): 052003.
                                                                                                                [12] Mirzaee, H., Dadvand, A., Mirzaee, I., & Shabani, R (2012) Heat transfer enhancement in microchannels using an elastic vortex generator. J. Enhanced Heat Transfer 19(3).
                                                                                                                [13] Sparrow, E. M., Baliga, B. R., & Patankar, S. V (1977) Heat transfer and fluid flow analysis of interrupted-wall channels, with application to heat exchangers: 4-11
                                                                                                                [14] Kaci, H. M., Habchi, C., Lemenand, T., Della Valle, D., & Peerhossaini, H (2010) Flow structure and heat transfer induced by embedded vorticity. Int. J. Heat Mass Transfer 53(17-18): 3575-3584.
                                                                                                                [15] Fiebig, M (1995) Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int. J. Heat Fluid Flow 16(5): 376-388.
                                                                                                                [16] Dadvand, A., Hosseini, S., Aghebatandish, S., & Khoo, B. C (2019) Enhancement of heat and mass transfer in a microchannel via passive oscillation of a flexible vortex generator. Chem. Eng. Sci. 207: 556-580.
                                                                                                                [17] Sun, X., Ye, Z., Li, J., Wen, K., & Tian, H (2019) Forced convection heat transfer from a circular cylinder with a flexible fin. Int. J. Heat Mass Transf.128: 319-334.
                                                                                                                [18] Hosseinirad, E., Khoshvaght-Aliabadi, M., & Hormozi, F (2019) Effects of splitter shape on thermal-hydraulic characteristics of plate-pin-fin heat sink (PPFHS). Int. J. Heat Mass Transfer 143: 118586.
                                                                                                                [19] Yu, X., Feng, J., Feng, Q., & Wang, Q (2005) Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 25(2-3): 173-182.
                                                                                                                [20] Razavi, S. E., Osanloo, B., & Sajedi, R (2015) Application of splitter plate on the modification of hydro-thermal behavior of PPFHS. Appl. Therm. Eng. 80: 97-108.
                                                                                                                [21] Yeom, T., Simon, T., Zhang, M., Yu, Y., & Cui, T (2018) Active heat sink with piezoelectric translational agitators, piezoelectric synthetic jets, and micro pin fin arrays. Exp. Therm Fluid Sci. 99: 190-199.
                                                                                                                [22] Li, X. J., Zhang, J. Z., & Tan, X. M (2018) An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow. Int. J. Heat Mass Transfer 126: 48-65.
                                                                                                                [23] Kimber, M., & Garimella, S. V (2009) Cooling performance of arrays of vibrating cantilevers. J. Heat Transfer 131(11).
                                                                                                                [24] Sufian, S. F., & Abdullah, M. Z (2017) Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink. Microelectron. Reliab. 68: 39-50.
                                                                                                                [25] Chen, Y., Peng, D., & Liu, Y (2020) Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. Int. J. Heat Mass Transf. 147: 118964.
                                                                                                                [26] Sheu, W. J., Chen, G. J., & Wang, C. C (2015) Performance of piezoelectric fins for heat dissipation. Int. J. Heat Mass Transf. 86: 72-77.
                                                                                                                [27] Wait, S. M., Basak, S., Garimella, S. V., & Raman, A (2007) Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Trans. Compon. Packag. Technol. 30(1): 119-128.
                                                                                                                [28] Yeom, T., Simon, T. W., Huang, L., North, M. T., & Cui, T (2012) Piezoelectric translational agitation for enhancing forced-convection channel-flow heat transfer. Int. J. Heat Mass Transfer 55(25-26): 7398-7409.
                                                                                                                 
                                                                                                                [29] Kang, M. S, Park, S. G, Dinh, C. T (2023) Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms. Int. J. Heat Mass Transfer 200: 123518.
                                                                                                                [30] Pham R, Wang S, Dahlgren J, Grindstaff N, Chen C. L (2022). Thermal-hydraulic-dynamic investigation of an inverted self-fluttering vortex generator. Int. J. Heat Mass Transfer 197: 123374.
                                                                                                                [31] Brodnianská Z, Kotšmíd S (2022) Heat Transfer Enhancement in the Novel Wavy Shaped Heat Exchanger Channel with Cylindrical Vortex Generators. Appl. Therm. Eng. 119720.
                                                                                                                [32] Latif U, Younis M. Y, Idrees S, Uddin E, Abdelkefi A, Munir A, Zhao M (2023) Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag. Renewable Sustainable Energy Rev. 173: 113114.
                                                                                                                [33] Cengel Y, Cimbala J (2013) Fluid Mechanics Fundamentals and Applications (SI units). 4th edn. McGraw Hill.
                                                                                                                [34] Yang, J (2005) An introduction to the theory of piezoelectricity (Vol. 9, p. 9). New York: Springer.
                                                                                                                [35] Bejan, A (2013) Convection heat transfer. John wiley & sons.
                                                                                                                [36] Webb, R. L (1981) Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat Mass Transfer 24(4): 715-726.
                                                                                                                [37] Zhang, X. D., & Sun, C. T (1996) Formulation of an adaptive sandwich beam. Smart Mater. Struct. 5(6), 814.
                                                                                                                [38] Parashar, S. K., Von Wagner, U., & Hagedorn, P (2004) A modified Timoshenko beam theory for nonlinear shear-induced flexural vibrations of piezoceramic continua. Nonlinear Dyn. 37(3): 181-205.
                                                                                                                [39] Turek, S., & Hron, J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-structure interaction: 371-385
                                                                                                                [40] Edwards, D. K., Denny, V. E., & Mills, A. F (1978) Transfer processes. an introduction to diffusion, convection and radiation. Series in Thermal and Fluids Engineering.