شبیه‌سازی ترموهیدرودینامیکی سه‌بعدی تاثیر روغن‌های صنعتی بر عملکرد یاتاقان‌های ژورنال کفشک لولایی با طول محدود

نوع مقاله : مقاله مستقل

نویسنده

دانشیار، مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

تحلیل و شبیه‌سازی عددی جریان روانکارهای صنعتی در یاتاقان‌های ژورنال به‌دلیل کاربرد فراوان و مستمر آنها در صنایع مختلف نظیر نیروگاه‌ها، توربوماشین‌ها، ماشین‌های الکتریکی، کشتی‌سازی، و غیره از اهمیت ویژه‌ای برخوردار می‌باشند. در این بررسی‌ها، اطلاعات مفید و ارزشمندی مانند تغییرات دمای کفشک و روغن، تلفات حرارتی و اصطکاکی، ظرفیت بارپذیری و غیره استخراج می‌شود که توسط طراحان و سازنده‌گان در بهبود عملکرد و کارایی یاتاقان‌ها مورد استفاده قرار می‌گیرد. در این مقاله یک برنامه عددی سه‌بعدی ترمو-هیدرودینامیکی، جهت شبیه‌سازی شرایط دائمی یاتاقان‌های ژورنال کفشک لولایی بدون محدودیت در ابعاد بویژه طول آنها تهیه شده است. در این برنامه، معادلات رینولدز جریان روغن در شکاف بین محور و کفشک‌های یاتاقان به‌کمک روش عددی تفاضلات محدود و تخفیف-متوالی حل می‌شود. در این شبیه‌سازی به‌منظور نزدیک بودن جواب‌ها به شرایط واقعی، تغییرات لزجت روغن با دما و تغییر شکل کفشک‌ها نیز درنظر گرفته می‌شود. جهت ارزیابی تاثیر خواص فیزیکی روغن بر رفتار هیدرودینامیکی یاتاقان، چند روغن مهم و پرکاربرد صنعتی که غالبا در یاتاقان‌ها مورد استفاده قرار می‌گیرد، انتخاب و نتایج آنها در این مقاله آورده شده است. تلفات اصطکاکی، بیشینه دمای کفشک‌ها، دبی جریان روغن، کمترین ضخامت فبلم روغن و زاویه لولایی کفشک‌ها از نتایج مهم ارائه شده می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Reynolds O (1886) On the theory of lubrication and its application to mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos T Roy Soc A 177: 157-234.
[2] Sommerfeld A (1904) Zur hydrodynamische theorie der schmiermittelreibung. Zeitschrift fur Mathematik und Physik 50: 97-155.
[3] Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design I. ASLE Trans 1(1): 159-174.
[4] Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design II. ASLE Trans 1(1): 174-193.
[5] Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design III. ASLE Trans 1(1): 194-209.
[6] Raimondi AA, Szeri AZ (1984) Journal and thrust bearings. 2edn. in CRC Handbook of Lubrication, E. R. Booser 413-462.
[7] Khonsari MM, Beaman JJ (1985) Thermo-hydrodynamic analysis of laminar incompressible journal bearings. ASLE Trans 29: 141-150.
[8] Boncompain R, Fillon M, Frene J (1986) Analysis of thermal effects in hydrodynamic bearings. J Tribol-T ASME 108: 219-224.
[9] Pierre I, France ED, Bouyer J, Fillon M (2004)  Thermohydrodynamic behavior of misaligned plain journal bearings: theoretical and experimental approaches. Tribol T 47: 594-604.
[10] Lund JW (1964) Spring and damping coefficients for the tilting pad journal bearing. ASLE Trans 42(4): 342-352.
[11] Orcutt FK (1967) The steady state and dynamic characteristics of the tilting pad journal bearing in laminar and turbulent flow regimes. Trans ASME Ser J 89(3): 392-404.
[12] Jones GJ, Martin FA (1979) Geometry effects in tilting-pad journal bearings. ASLE Trans 22(3) 227-244.
[13] Knight JD, Barrett LE (1988) Analysis of tilting pad journal bearings with heat transfer effects. . J Tribol-T ASME 110(1): 128-133.
[14] Hyun CH, Ho JK, Kyung WK (1995) Inlet pressure effects on the thermohydrodynamic performance of a large tilting pad journal bearing. . J Tribol-T ASME 117(1): 160-165.
[15] Fillon M, Frene J (1995) Numerical simulation and experimental results on thermo-elasto-hydrodynamic tilting-pad journal bearings, IUTAM symposium on numerical simulation of non-isothermal flow of viscoelastic liquids. Fluid Mechanics and Its Applications 28: 85-99.
[16] Monmousseau P, Fillon M, Frêne J (1997) Transient thermoelastohydrodynamic study of tilting-pad journal bearings—comparison between experimental data and theoretical results. J Tribol-T ASME 119(3): 401-407.
[17] Reddy DSK, Swarnamani S, Prabhu BS (2000) Thermoelastohydrodynamic analysis of tilting pad journal bearing - theory and experiments. Tribol T 43(1): 82-90.
[18] Fillon M, Dmochowski W, Dadouche A (2007) Numerical study of the sensitivity of tilting pad journal bearing performance characteristics to manufacturing tolerances: steady-state analysis. Tribol T 50(3): 387-400.
[19] Hargreaves M, Fillon M (2007) Analysis of a tilting pad journal bearing to avoid pad fluttering. Tribol Int 40(4): 607-612.
[20] Hou Y, Lai T, Chen S, Ma B, Liu J (2013) Numerical analysis on the static performance of tilting pad journal gas bearing in subsystems. Tribol Int 61: 70-79.
[21] Daniel GB, Cavalca KL (2013) Evaluation of the thermal effects in tilting pad bearing. International Journal of Rotating Machinery 5: 1-17.
[22] Akbarzadeh P (2015) Numerical study of thermohydrodynamic characteristics of oil tilting-pad journal bearings with a self-pumping fluid flow circulation. Tribol T 58: 18-30.
[23] Lihua Y, Shemiao Q, Haipeng G, Lie Y (2009) Static characteristics of aerodynamic tilting pad journal bearing. Proceeding of the IEEE International Conference on Automation and Logistics, Shenyang, China, August.
[24] Stachowiak GW, Batchelor AW (2005) Engineering tribology. 3rd edn. Elsevier Inc.
[25] Szeri AZ (2001) Fluid film lubrication: theory and design. 2nd edn. Cambridge University Press.
[26] Boncompain R, Fillon M, Frene J (1986) Analysis of thermal effects in hydrodynamic bearings. . J Tribol-T ASME 108: 219-224.
[27] Vogelpohl G (1937) Beitraege zur Kenntnis der Gleitlagerreibung (Contributions to Study of Journal Bearing Friction). Ver Deutsch Ing, Forschungsheft, 386: 1-28.
[28] Website of Thermal & Mechanical Equipment Company(TMEC):http://www.tmec.com/engineering-tools/fluid-properties/