مطالعه پارامتریک دینامیکی لوله‌های چرخان مدرج محوری حامل سیال با درنظرگیری اثرات اندازه

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

2 دکتری تخصصی، دانشکده مهندسی برق، مکانیک و کامپیوتر، دانشگاه ایوان‌کی، ایوان‌کی، ایران

10.22044/jsfm.2020.9649.3180

چکیده

باهدف بهبود عملکرد سیستم‌های بایژیروسکوپیک، ارتعاشات و پایداری یک نانولوله حامل سیال مدرج محوری تابعی چرخان تحت یک بارمحوری براساس تئوری گرادیان کرنش غیرمحلی، عددی و تحلیلی مطالعه شده است. همچنین، یک تحقیق پارامتریک مفصل به‌منظور توضیح اثر فاکتورهای کلیدی مختلف مانند نوع توزیع مواد و پارامترهای وابسته به‌اندازه بر مرزهای کمانش و فلاتر سیستم انجام‌شده است. ضمنا، یک مطالعه مقایسه‌ای برای ارزیابی تئوری‌های موجود در زمینه مدل‌سازی سیستم‌های نانوفلوییدیک انجام شده است. فرض شده است مشخصات مادی سیستم در راستای طولی بر طبق قانون توانی تغییر می‌کنند. برای فرموله کردن صحیح سیستم، شرط لغزش در نظر گرفته‌شده است. با استفاده از تبدیل لاپلاس و تکنیک گسسته سازی گالرکین، معادلات وابسته به‌اندازه حاکم بر سیستم حل‌شده‌اند. ضمناً، یک روش تحلیلی نیز برای شناسایی آستانه‌های ناپایداری سیستم به‌کاربرده شده است. پیکره بندی ارتعاشاتی، نمودارهای کمپبل و نقشه‌های پایداری سیستم آزموده شدند و برای اولین بار در این مقاله نشان داده‌شده است که با تنظیم صحیح درجه‌بندی محوری مواد می‌توان روند تکاملی دینامیکی سیستم را تغییر داد. همچنین، نتیجه شده است که برعکس پارامترهای غیرمحلی و گرادیان چگالی، با افزایش پارامترهای گرادیان کرنش و گرادیان مدول الاستیک می‌توان محدوده‌های پایداری را گسترش داد و اثرات ناپایدارکننده نیروی محوری فشاری را تقلیل داد.

کلیدواژه‌ها


[1] Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian MT (2020) Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express 6(3): 1250c1255.
[2] Ebrahimi-Mamaghani A, Sarparast H, Rezaei M (2020) On the vibrations of axially graded Rayleigh beams under a moving load. Appl Math Model 84(3): 554-570.
[3] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2019) Dynamics of two-phase flow in vertical pipes. J Fluids Struct 87(1): 150-173.
[4] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2020) Thermo-mechanical stability of axially graded Rayleigh pipes. Mech Based Des Struc 1-30. doi:10.1080/15397734.2020.1717967.
[5] Ebrahimi Mamaghani A, Hosseini R, Shahgholi M, Sarparast H (2018) Free lateral vibration analysis of inhomogeneous beams under various boundary conditions. Journal of Solid and Fluid Mechanics 8(1): 123-135. (In Persian)
[6] Ebrahimi Mamaghani A, Sarparast H (2018) Target energy transfer from a doubly clamped beam subjected to the harmonic external load using nonlinear energy sink. Journal of Solid and Fluid Mechanics 8(9): 165-177. (In Persian)
[7] Hosseini R, Ebrahimi mamaghani A, Nouri M (2017) An experimental investigation into width reduction effect on the efficiency of piezopolymer vibration energy harvester. Journal of Solid and Fluid Mechanics 7(3): 41-51. (In Persian)
[8] Mamaghani AE, Khadem S, Bab S (2016) Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn 86(1): 1761-1795.
[9] Mamaghani AE, Khadem SE, Bab S, Pourkiaee SM (2018) Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int J Mech Sci 138(8): 427-447.
[10] Mamaghani AE, Zohoor H, Firoozbakhsh K, Hosseini R (2013) Dynamics of a running below-knee prosthesis compared to those of a normal subject. J Solid Mech 6(3): 152-160.
[11]Liang F, Yang XD, Zhang W, Qian YJ (2018) Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J Sound Vib 417:65-79
[12] Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A Solids 72: 298-309
[13]Liang F, Yang XD, Qian YJ, Zhang W (2018) Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int J Mech Sci 137: 195-204
[14] Liang F, Yang XD, Zhang W, Qian YJ (2018) Nonlinear free vibration of spinning viscoelastic pipes conveying fluid. Int J Appl Mech 10(07): 1850076
[15] Hosseini R, Hamedi M, Ebrahimi Mamaghani A, Kim HC, Kim J, Dayou J (2017) Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. Int J Smart Nano Mater 8(2): 110-124.
[16] Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A (2019) Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Des Struc Mach 1-31. doi:10.1080/15397734.2019.1701491.
[17] Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, Won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struc Mach 1-23. doi:10.1080/15397734.2020.1748052.
[18] Abdelmalek Z, Karbon M, Eyvazian A, Forooghi A, Safarpour H, Tlili I (2020) On the dynamics of a curved microtubule-associated proteins by considering viscoelastic properties of the living biological cells. J Biomol Struc Dyn 1-15. doi: 10.1080/07391102.2020.1747549
[19] Tu Q, Yang Q, Wang H, Li S (2016) Rotating carbon nanotube membrane filter for water desalination. Sci Rep 6: 26183
[20] Pardo J, Peng Z, Leblanc RM (2018) Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molec 23 (2): 378
[21] Narendar S (2012) Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl Math Comp 219(3): 1232-1243
[22] Ilkhani M, Nazemnezhad R (2019) Molecular dynamics simulation and size dependent cylindrical shell models for vibrations of spinning axially loaded carbon nanotubes. Europea J Mech A Solids 77: 103804
[23] Torkaman-Asadi M, Rahmanian M, Firouz-Abadi R (2015) Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations. Compos Struc 126:52-61
[24] Hosseini-Hashemi S, Ilkhani M (2016) Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory. Compos Struc 157:1-11
[25] SafarPour H, Ghadiri M (2017) Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microflu and Nanoflu 21 (2):22
[26] Esfahani S, Esmaeilzade Khadem S, Ebrahimi Mamaghani A (2019) Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int J Mech Mater Des 15(1): 489-505.
[27] Esfahani S, Khadem SE, Mamaghani AE (2019) Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory. Int J Mech Sci 151(1): 508-522.
[28] Sarparast H, Ebrahimi-Mamaghani A (2019) Vibrations of laminated deep curved beams under moving loads. Compos Struc 226(3):  111262.
[29] Mirtalebi SH, Ahmadian MT, Ebrahimi-Mamaghani A (2019) On the dynamics of micro-tubes conveying fluid on various foundations. SN Appl Sci 1(1): 547.
[30] Mirtalebi SH, Ebrahimi-Mamaghani A, Ahmadian MT (2019) Vibration control and manufacturing    of intelligibly designed axially functionally    graded cantilevered macro/micro-tubes. IFAC-PapersOnLine 52(2): 382-387.
[31] Sarparast H, Ebrahimi‐Mamaghani A, Safarpour M, Ouakad HM., Dimitri R, Tornabene F (2020) Nonlocal study of the vibration and stability response of small‐scale axially moving supported beams on viscoelastic‐Pasternak foundation in a hygro‐thermal environment. Math Meth Appl Sci. doi: org/10.1002/mma.6859
[32] Ebrahimi-Mamaghani A, Forooghi A, Sarparast H, Alibeigloo A, Friswell MI (2020) Vibration of viscoelastic axially graded beams with simultaneous axial and spinning motions under an axial load. Appl Math Model 90: 131-150. doi: 10.1016/j.apm.2020.08.041
[33] Forooghi A, Ebrahimi mamaghani A (2020) Investigation of dynamics and stability behavior of axially moving micro-beams with functionally graded property in the longitudinal direction. J Solid Fluid Mech 10(2): 79-94. doi: 10.22044/jsfm.2020.8952.3027. (In Persian)
[34] Ghane M, Saidi AR, Bahaadini R (2020) Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory. Appl Math Model 80: 65-83
[35] Farajpour A, Ghayesh MH, Farokhi H (2019) Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. Int J Mech Sci 150: 510-525
[36] Shen J, Wang P, Li C, Wang Y (2019) New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory. Compos Struc 225: 111036
[37] Mahinzare M, Mohammadi K, Ghadiri M (2019) A nonlocal strain gradient theory for vibration and flutter instability analysis in rotary SWCNT with conveying viscous fluid. Wav Rand Comp Media 1-26
[38] Eftekhari M, Hosseini M (2016) On the stability of spinning functionally graded cantilevered pipes subjected to fluid-thermomechanical loading. Int J Struc Stab Dyn 16(09): 1550062
[39] Setoodeh A, Afrahim S (2014) Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos Struc 116: 128-135
[40] Deng J, Liu Y, Zhang Z, Liu W (2017) Size-dependent vibration and stability of multi-span viscoelastic functionally graded material nanopipes conveying fluid using a hybrid method. Compos Struc 179: 590-600
[41] Filiz S, Aydogdu M (2015) Wave propagation analysis of embedded (coupled) functionally graded nanotubes conveying fluid. Compos Struc 132: 1260-1273
[42] Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struc 165: 250-265
[43] Bahaadini R, Hosseini M, Jamali B (2018) Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Physica B: Condensed Matter 529: 57-65
[44] Lu P, Lee H, Lu C, Zhang P (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J appl phy 99(7): 073510
[45] Atashafrooz M, Bahaadini R, Sheibani HR (2020) Nonlocal, strain gradient and surface effects on vibration and instability of nanotubes conveying nanoflow. Mech Adv Mater Struc 27(7): 586-598
[46] Mirramezani M, Mirdamadi HR (2012) Effects of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube conveying fluid. Physica E: Low-dimensional Sys Nanostruc 44(10): 2005-2015
[47] Lee H-L, Chang W-J (2009) Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Physica E: Low-dimensional Sys Nanostruc 41(4): 529-532
[48] Paidoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic press, London.