تحلیل مسائل دو-بعدی و سه-بعدی هدایت حرارت حالت گذرا شامل منابع حرارتی متحرک نقطه‌ای با استفاده از روش جواب‌های اساسی

نوع مقاله: مقاله مستقل

نویسنده

استادیار، بخش مهندسی مکانیک، دانشکده‌ی فنی و مهندسی، دانشگاه آزاد اسلامی واحد شیراز، شیراز، ایران

10.22044/jsfm.2020.8668.2967

چکیده

در این تحقیق، یک فرمول‌بندی موثر مبتنی بر روش جواب‌های اساسی، جهت تحلیل مسائل دو-بعدی و سه-بعدی هدایت حرارت حالت گذرا شامل منابع حرارتی متحرک نقطه‌ای ارائه گردیده است. این فرمول‌بندی جدید بوده و تاکنون ارائه نشده است. در فرمول‌بندی ارائه شده مسیر حرکت و شدت منبع حرارتی متحرک نقطه‌ای، توابع دلخواهی از زمان هستند و تعداد منابع حرارتی متحرک نیز محدودیتی ندارد. حل مساله‌ی مورد نظر، بصورت یک ترکیب خطی از جواب‌های اساسی وابسته به زمان و حل ویژه‌ی مربوط به اثر منبع حرارتی متحرک نقطه‌ای در نظر گرفته شده است. حل ویژه، بصورت یک انتگرال وابسته به زمان و مکان ارائه شده و بدون استفاده از هرگونه سلول یا نقاط داخلی و بدون نیاز به تبدیل زمانی، بدست آمده است. مثال‌های عددی، کارایی و دقت روش پیشنهاد شده را در مقایسه با روش المان محدود نشان می‌دهند. در مدل‌سازی منبع متحرک نقطه‌ای به روش المان محدود، لازم است که از یک شبکه‌بندی المانی ریز برای مسیر عبور منبع استفاده شود که هزینه‌ی مرحله‌ی پیش‌پردازش را افزایش می‌دهد. در مقایسه با روش المان محدود، روش جواب‌های اساسی پیشنهاد شده، بسیار ساده بوده و با استفاده از تعداد کمی از نقاط چشمه به نتایج بسیار خوبی می‌رسد. به عنوان نمونه، در مثال حل شده‌ی دوم، میانگین درصد اختلاف نسبی بین نتایج روش ارائه شده با 218 نقطه‌ی چشمه و روش المان محدود با 7268 گره، 0.65 درصد می‌باشد.

کلیدواژه‌ها


[1] Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proc R Soc New South Wales 76: 203-224.

[2] Levin P (2008) A general solution of 3-D quasi-steady-state problem of a moving heat source on a semi-infinite solid. Mech Res Commun 35: 151-157.

[3] Belghazi H, El Ganaoui M, Labbe JC (2010) Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source. Int J Therm Sci 49: 311-318.

[4] Sobamowo GM, Jaiyesimi L, Waheed AO (2017) Transient three-dimensional thermal analysis of a slab with internal heat generation and heated by a point moving heat source. JMEE 18: 43-64.

[5] Ascough J (1985) A single step finite element analysis of the temperature distribution around a moving laser heat source. Opt Lasers Eng 6: 137-143.

[6] Nisar A, Schmidt MJJ, Sheikh MA, Li L (2003) Three-dimensional transient finite element analysis of the laser enameling process and moving heat source and phase change considerations. Proc Inst Mech Eng B J Eng Manuf 217: 753-764.

[7] Yang CY (2006) The determination of two moving heat sources in two-dimensional inverse heat problem. Appl Math Model 30: 278-292.

[8] Zdeněk V, Milan H, Jiří M (2016) 3D model of laser treatment by a moving heat source with general distribution of energy in the beam. Appl Opt 55: 140-150.

[9] میکاییلی ص، بهجت ب (1395) تحلیل سه‌بعدی خمش ورق هدفمند ضخیم با استفاده از روش بدون المان گلرکین در شرایط مرزی مختلف. مجله مکانیک سازه­ها و شاره­ها      120-109 :(2)6.

[10] تورنجی پور پ، خسروی فرد ا، وطن خواه ر (1397) تحلیل ورق‌های تحت بارگذاری متمرکز دارای حرکت با استفاده از یک روش بدون المان با بازچیدمان گرهی تطبیقی. مجله مکانیک سازه‌ها و شاره‌ها 25-11 :(4)8.

[11] Shiah YC, Guao TL, Tan CL (2005) Two-dimensional BEM thermoelastic analysis of anisotropic media with concentrated heat sources. CMES 7: 321-338.

[12] Hematiyan MR, Mohammadi M, Aliabadi MH (2011) Boundary element analysis of two- and three-dimensional thermo-elastic problems with various concentrated heat sources. J Strain Anal Eng 46: 227-242.

[13] Mohammadi M, Hematiyan MR, Shiah YC (2018) An efficient analysis of steady-state heat conduction involving curved line/surface heat sources in two/three-dimensional isotropic media. J Theor App Mech 56: 1123-1137.

[14] Ghiasi N, Khosravifard A (2019) A Novel method for estimation of intensity and location of multiple point heat sources based on strain measurement. Eng Anal Bound Elem 98: 203-216.

[15] Haghighi A, Hematiyan MR (2018) Optimization of the cross-section of hollow bars under torsion using the method of fundamental solutions. MME 17(11): 269-276. (in Persian)

[16] Mathon R, Johnston RL (1977) The approximate solution of elliptic boundary value problems by fundamental solutions. SIAM J Numer Anal 14(4): 638-650.

[17] Fairweather G, Karageorghis A (1998) The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math 9: 69-95.

[18] Chen CS, Golberg MA, Hon YC (1998) The method of fundamental solutions and quasi-Monte-Carlo method for diffusion equations. Int J Numer Meth Eng 43: 1421-1435.

[19] Young DL, Tsai CC, Murugesan K, Fan CM, Chen CW (2004) Time dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Bound Elem 28: 1463-1473.

[20] Chantasiriwan S (2006) Methods of fundamental solutions for time dependent heat conduction problems. Int J Numer Meth Eng 66: 147-165.

[21] Johansson BT, Lesnic D, Reeve T (2011) A method of fundamental solutions for two dimensional heat conduction. Int J Comput Math 88: 1697-1713.

[22] Reeve T, Johansson BT (2013) The method of fundamental solutions for a time-dependent two-dimensional Cauchy heat conduction problem. Eng Anal Bound Elem 37: 569-578.

[23] Johansson B, Lesnic D (2008) A method of fundamental solutions for transient heat conduction. Eng Anal Bound Elem 32: 697-703.

[24] Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4): 561-580.