تحلیل فرکانس های طبیعی یک پوسته استوانه ای ایزوتروپیک چند لایه تقویت شده با سه رینگ تحت فشارهای خارجی بر اساس تئوری مرتبه اول برشی

نوع مقاله: مقاله مستقل

نویسنده

استادیار، دانشکده مهندسی مکانیک، واحد اندیمشک، دانشگاه آزاد اسلامی، اندیمشک، ایران

چکیده

در این مقاله به بررسی فرکانس های طبیعی یک پوسته‌ استوانه‌ای ایزوتروپیک چند لایه تقویت شده با سه رینگ تحت فشار خارجی پرداخته شده است. پیکربندی پوسته استوانه ای تقویتی تشکیل شده است از سه لایه ایزوتروپیک که لایه های داخلی و خارجی از فولاد ضد زنگ و لایه میانی متشکل از ماده آلومینیوم می باشد. معادلات پوسته استوانه ای ایزوتروپیک چند لایه تقویت شده بر اساس تئوری مرتبه اول تغییر شکل برشی بدست آمده است. سپس، معادلات حاکم بر حرکت به روش انرژی و بکار بردن تکنیک ریتز استخراج شده اند. تحلیل روی خصوصیات فرکانسهای طبیعی با شرایط مرزی مختلف به وسیله تابع تیر محوری صورت پذیرفت. شرایط مرزی در لبه های دو انتهای پوسته استوانه ای ایزوتروپیک چند لایه به صورت ساده- ساده، گیردار- گیردار و آزاد- آزاد در نظر گرفته شده است. تاثیر فشارهای خارجی، موقعیت رینگ های تقویتی و شرایط مرزی مختلف روی فرکانسهای طبیعی بررسی شده است. نتایج نشان داد که رینگ های تقویتی و فشار خارجی روی پوسته‌ استوانه‌ای ایزوتروپیک چند لایه اثر می گذارند و منجر به افزایش فرکانسهای طبیعی می گردد. نتایج ارائه شده می تواند به عنوان یک معیار مهم برای محققان جهت اعتبار سنجی روشهای تحلیلی استفاده شوند.

کلیدواژه‌ها

موضوعات


[1] Qatu MS (2002) Recent research advances in the dynamic behavior of shells. Appl Mech Rev 55(5): 415-434.

[2] Al-Najafi AMJ, Warburton GB (1970) Free vibration of ring-stiffened cylindrical shells. J Sound Vib 13(1): 9-25.

[3] Sharma CB, Johns DJ (1971) Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell. J Sound Vib 14(4): 459-474.

[4] Schneidera W, Zahltenb W (2004) Load-bearing behaviour and structural analysis of slender ring-stiffened cylindrical shells under quasi-static wind load. J Constr Steel Res 60 (1): 125-146.

[5] Yan J, Li TY, Liu TG, Liu JX (2006) Characteristics of the vibrational power flow propagation in a submerged periodic ring-stiffened cylindrical shell. Appl Acoust 67(6): 550-569.

[6] Wang RT, Lin ZX (2006) Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells. J Sound Vib 295 (4): 964-987.

[7] Arnold RN, Warburton GB (1953) The rexural vibrations of thin cylinders. Pt. C J Mechan 167(1): 62-80.

[8] Blevins RD (1979) Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York.

[9] Soedel W (1980) A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. J Sound Vib 70(3): 309-317.

[10] Chung H (1981) Free vibration analysis of circular cylindrical shells. J Sound Vib 74(3): 331-350.

[11] Reddy JN (2004) Mechanics of Laminated Composite Plates and Shells. 2nd edn. CRC Press, New York.

[12] Soedel W (2004) Vibration of Shells and Plates. 3rd edn, Marcel Dekker Inc, New York.

[13] Liu L, Cao D, Sun S (2013) Vibration analysis for rotating ring-stiffened cylindrical shells with arbitrary boundary conditions. J Vib Acoust 135 (6): 1-12.

[14] Ramamurti V, Pattabiraman J (1977) Dynamic behaviour of a cylindrical shell with a cutout. J Sound Vib 52(2): 193-200.

[15] Shen S, Xing J, Fan F (2003)  Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading. Earthq Eng Eng Vib 2(2): 2693-279.

[16] Saravanan C, Ganesan N, Ramamurti V (2000) Vibration and damping analysis of multilayered fluid filled cylindrical shells with constrained viscoelastic damping using modal strain energy method. Comput Struct 75(4): 395-417.

[17] Hua L (2000) Influence of boundary conditions on the free Vibrations of rotating truncated circular multi-layered conical shells. Compos Part B Eng 31(4): 265-275.

[18] Malekzadeh K, Khalili MR, Davar A, Mahajan P (2010) Transient dynamic response of clamped-free hybrid composite circular cylindrical shells. App Compos Mater 17(2): 243-257.

[19] Qu Y, Chen Y, Long X, Hua H, Meng G (2013) A modified variational approach for vibration analysis of ring-stiffened conical-cylindrical shell combinations. Eur J MechA 37(1): 200-215.

[20] Isvandzibaei MR, Jamaluddin H, Raja Hamzah RI (2016) Vibration analysis of supported thick-walled cylindrical shell made of functionally graded materialunder pressure loading. J Vib Control 22(4): 1023-1036.

[21] Hull AJ (2014) Response of a cylindrical shell with finite length ring stiffeners. J Acoust Soc Am 135(4): 2350-2361.

[22] یوسف زاده ش، عیسوند زیبایی م ر، قیصری م (1396) کمانش پوسته استوانه ای تقویتی جدار ضخیم تابعی با استفاده از تئوری مرتبه سوم برشی تحت بارهای محوری و جانبی یکنواخت. مجله مهندسی مکانیک مدرس 385-373 :(7)17.

[23] Moon FC, Shaw SW (1983) Chaotic vibrations of a beam with non-linear boundary conditions. Int J Nonlin Mech 18(6): 465-477.

[24] Loy CT, Lam KY, Reddy JN (1999) Vibration of functionally graded cylindrical shells. Int J Mech Sci41(3): 309-324.

[25] Arshad SH, Naeem MN, Sultana N, Shah A,  Iqbal Z (2011) Vibration analysis of bi-layered FGM cylindrical shells. Arch Appl Mech 81(3): 319-343.