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Abstract 
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design 

an optimal discrete-time control for a robot manipulator since the robot manipulator is highly nonlinear and 

uncertain. This paper presents a novel robust optimal discrete-time control for electrically driven robot 

manipulators in performing repetitive tasks. The robot performs repetitive tasks by tracking a periodic trajectory. 

The proposed controller includes a discrete linear quadratic controller and a time-delay controller. To apply the 

discrete linear quadratic controller, a novel nominal model is obtained for the robotic system which is discrete, 

linear, and time-invariant. Then, nonlinearities and uncertainties of the robotic system are compensated by the 

robust time-delay controller. The proposed control law is verified by stability analysis and its effectiveness is 

illustrated by simulations. Recently, time-optimal and minimum-norm discrete repetitive control of robot 

manipulators has been proposed. Compared with it, the proposed control has an advantage of being free from 

manipulator dynamics, thus it is simpler, more robust, and less computational with smoother control efforts. 

Keywords: Optimal discrete repetitive control; Discrete linear quadratic control; Time-delay control; Robot 

manipulators. 

 

 
1. Introduction 
A promising control approach to achieve tracking of 

periodic signals is repetitive control. It has gained a 

great deal of research interest in various forms of 

control approaches for the robot manipulators such as 

discrete time repetitive control [1], repetitive model 

reference adaptive control [2], Lyapunov-based 

repetitive learning control [3] and adaptive repetitive 

learning control [4]. 

The mentioned control approaches are based on the 

model of robot manipulator; however, the model 

uncertainty is compensated. Industrial robots meet the 

key structural features such as repeatability, which is 

important in many manufacturing applications for 

performing repetitive trajectories. Therefore, model-

based control may work in tracking repetitive 

trajectories. However, performance of the control 

system depends on the precision of model. This 

characteristic plays an important role particularly in the 

high-speed and high-accuracy applications. The higher 

orders un-modeled dynamics will degrade the control 

performance in the high speed. It is well known that a 

robot manipulator is highly nonlinear, heavily coupled 

and multivariable, thus shows a complicated imprecise 

model affected by uncertainties. Therefore, finding a 

control approach that is less dependent on model or 

free of model will be very useful. Alternatively, robust 

and adaptive control may be proposed to overcome 

uncertainties.  

Iterative learning control can efficiently cancel the 

repetitive error [5]. However, its performance is 

degraded by the non-repetitive errors. In addition, 

learning rules may show low rate of convergence and 

unsatisfactory performance in the initial trials. The 

control system is affected by initial conditions [6], 

disturbances [7], learning transient [8] and non-

minimum phase systems [9]. Performance of the 

repetitive control has been efficiently improved by 

utilizing adaptive control [10-12]. However, adaptive 

control may be involved in computational complexity, 

unsatisfactory initialization and implementation 

difficulty. Adaptive iterative learning control has been 

proposed to remove some mentioned shortcomings 

[13]. An iterative term is used to cope with unknown 
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parameters and disturbances. The control design is 

simple and robust; however, it has low rate of 

convergence and unsatisfactory performance in the 

initial trials. 

So far, torque control strategy is a commonly used 

strategy for robot manipulators. However, there would 

be some shortcomings to apply this strategy since the 

torque control laws are affected by manipulator 

dynamics to become highly nonlinear, heavily coupled 

and computationally extensive. In contrast, voltage 

control strategy [14] can be free from manipulator 

dynamics. Actually, the robot control becomes the 

problem of motor control in the voltage control 

strategy. This advantage provides a simple control 

design in a decentralized structure, thus makes it 

superior to the torque control strategy. In comparison 

with voltage control in [14], a fully feedback 

linearization is not applied in this paper. The proposed 

control law is simple with an advantage of not using 

the motor current and its time derivative. Following our 

research on voltage control strategy, some voltage 

control laws were proposed for electrically driven 

robots in the form of robust fuzzy control [15], robust 

task-space control [16], robust time-delay control [17], 

robust adaptive control [18], Robust Time-Optimal 

Minimum-Norm Discrete Repetitive (RTOMNDR) 

control [19] and adaptive fuzzy estimation of 

uncertainty [20].  

Based on the voltage control strategy, this paper 

presents a novel Robust Optimal Discrete Repetitive 

(RODR) control for electrically driven robot 

manipulators. Despite nonlinearity of manipulator 

dynamics, as a novelty, a discrete linear time-invariant 

model for the robotic system is introduced. All 

nonlinearity, unmodeled dynamics, parametric 

uncertainty and external disturbances in the robotics 

system are given as a lumped uncertainty in the model. 

Then, a two-term control law is proposed in which the 

first term is a Discrete Linear Quadratic (DLQ) 

controller to provide an optimal control and guarantee 

the system stability. The second term is a robust time-

delay controller to compensate the lumped uncertainty 

for improving performance of the control system.  

The rest of this paper is organized as follows: 

Section 2 introduces a discrete linear time-invariant 

model for the robotic system. Section 3 presents a 

robust time-delay control law.  Section 4 describes the 

DLQ controller. Section 5 presents the stability 

analysis. Section 6 illustrates the simulation results and 

gives comparisons with the RTOMNDR control. 

Finally, Section 7 concludes the paper.     

 

2. Discrete Linear Time Invariant Model  

Consider a rigid robot manipulator driven by 

permanent magnet dc motors [21]. The voltage 

equation of permanent magnet dc motors in the matrix 

form is given by 

  a a b mv RI LI k θ  (1) 

where nRv  is the vector of motor voltages, 
nRaI  

is the vector of motor currents  and 
nRmθ  is the 

vector of motor positions. , , n nR bk R L  are the 

diagonal matrices of the back emf constants, 

resistances and inductances, respectively. Matrices and 

vectors are presented in the bold form. 

The motor torque is produced by the motor current 

as 

m m aτ K I  (2) 

where 
nRmτ  is the vector of motor torques and 

n nR mK  is the diagonal matrix of torque constants.  

The motor position vector mθ  is related to the 

joint position vector of robot manipulator q  through 

the gears as 

 mq rθ  (3) 

where n nR r  is the diagonal matrix of reduction 

gear coefficients.  

The electric motors drive the robot manipulator 

according to the dynamics 

m m m m m
J θ +B θ +rτ = τ  (4) 

where nRτ  is the vector of joint torques, 

, n nR m mJ B  are the diagonal matrices of motor inertia 

and damping, respectively. 

Dynamics of a robotic manipulator is given by 

( ) ( , ) ( )D q q +C q q q + g q = τ  
(5) 

where ( ) n nR D q  is the inertia matrix, ( , ) nRC q q q  

is the vector of generalized centripetal and Coriolis 

forces, and ( ) nRg q  is the vector of generalized 

gravitational forces.  

By using (1)-(5), the dynamics of robotic system 

including the robot manipulators and electric motors is 

then expressed as 

 

 

1 1

1 1 1 1

1

( )

( )

( )

 

   



 

 

   

a m m

a m m a m b

a m a

R K J r rD q q

R K B r R K rC q,q K r q

R K rg q LI ξ V

 (6) 

The vector nRξ  denotes the external 

disturbances. The obtained model is highly nonlinear, 

heavily coupled, multivariable and uncertain. In order 

to obtain a simple discrete linear time-invariant model, 

all nonlinearities and uncertainties including un-

modeled dynamics, parametric uncertainty and external 
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disturbances are given as the lumped uncertainty. For 

this purpose, we rewrite (6)  

 

1 1

1 1 1

 

  



  

a m m

a m m b

R K J r q

R K B r K r q φ V
 

(7) 

where φ  is given by 

1 1

1

( ) ( )

( )

 



 

  

a m a m

a m a

φ R K rD q q R K rC q,q q

R K rg q LI ξ
 

(8) 

Then, one can rewrite (7) by using nominal terms 

as  

 

1 1

1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

 

  



  

a m m

a m m b

R K J r q

R K B r K r q ψ V
 (9) 

where ψ  is called the lumped uncertainty  expressed 

as 

 

 

1 1 1 1

1 1 1 1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

   

     

 

  

 

a m m a m m

a m m a m m b b

R K J r R K J r q

R K B r R K B r K r K r q

φ ψ

 (10) 

and ˆ
aR , ˆ

mK , ˆ
mJ , r̂  and ˆ

bK  are the nominal 

coefficient matrices for the real matrices aR , mK , 

mJ , r  and bK , respectively.  

One can easily form a state-space model for the 

robotic system (9), 

  X MX NV Nψ  (11) 

where the state matrix M , the input gain matrix N  

and state vector X  are expressed as 

 
  
 

q
X

q
, 

1 1ˆ ˆ ˆˆ  

 
  
  m m a

0
N

rJ K R
, 

 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ    

 
 

   m m a a m m b

0 I
M

0 rJ K R R K B r K r
 

(12) 

where I  is the identity matrix.  

There exists a vector dV  such that 

 d d dX MX NV  (13) 

where 
 

  
 

d
d

d

q
X

q
 and dq  is a desired joint position 

vector. dV  is calculated by  

   
1

T T


 d d dN N N X MX V  (14) 

Subtracting (11) from (13) results in the state-space 

model in the tracking space as, 

  E ME NU Nψ  (15) 

where 

 dE X X  (16) 

 dU V V  (17) 

The proposed model (15) has an advantage that M  

and N  are constant and free from manipulator 

parameters. However, model (15) includes the 

uncertainty ψ . The proposed model is an uncertain 

linear time-invariant system. 

Using a sampling period  , substituting k  into  

t , then approximating E  as ( ( ) ( )) /t t   E E E  in 

(15), we obtain a discrete linear time-invariant system 

of the form 

1k k k k   E AE BU Bψ  (18) 

where ( )k kE E ,  A Ι M , B N , ( )k kU U , 

( )k kψ ψ .  

 

3. Robust Time-Delay Control Law 

We have proposed this type of uncertainty estimation 

to estimate the uncertainty in the robust impedance 

control of a hydraulic suspension system [22], the 

control of flexible-joint robots [17] and the 

RTOMNDR control [19]. 

To make the dynamics of tracking error well-

defined such that the robot can track the desired 

trajectory, we make the following assumptions: 

Assumption 1: The desired trajectory dq  must be 

smooth in the sense that dq  and its derivatives up to a 

necessary order are available and all uniformly 

bounded. 

Smoothness of the desired trajectory can be 

guaranteed by proper trajectory planning. 

As a necessary condition to design a robust 

controller, the matching condition must be satisfied:  

Matching condition: the uncertainty must enter the 

system the same channel as the control input. Then, the 

uncertainty is said to satisfy the matching condition 

[23] or equivalently is said to be matched. We ensure 

the matching condition since in system (15), the 

lumped uncertainty ψ  enters the system the same 

channel as the control input U . 

As a necessary condition to design a robust control, 

the external disturbance ξ  used in (6) must be 

bounded. Thus, the following assumption can be made. 

Assumption 2: The external disturbance ξ  is bounded 

as  

maxξ  (19) 

 where 
m ax  is a positive constant. 

The voltage of every motor should be limited to 

protect the motor against over voltages. For this 
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purpose, every motor is equipped with a voltage 

limiter. Therefore, we introduce the following 

assumption: 

Assumption 3: The motor voltages are bounded as 

maxVV  (20) 

where 
m axV  is a positive constant. 

A two-term control law is proposed to track the 

repetitive trajectory in the workspace. The first term is 

an optimal DLQ controller and the second term is a 

robust time-delay controller. Thus, system (18) is 

presented as 

1 1, 2,k k k k k    E AE BU BU Bψ  (21) 

where 1,kU  and 2,kU  are the first and second terms of 

control input. Performance of the repetitive control is 

improved if the lumped uncertainty kψ  is 

compensated. The uncertainty is perfectly compensated 

if 

2,k k BU Bψ  (22) 

Since kψ  is not known, control law (18) cannot be 

defined. To estimate the uncertainty, we obtain from 

(21) 

1 1, 2,k k k k k   Bψ E AE BU BU  (23) 

 Since 1kE  is not available in the kth step, kBψ  

cannot be calculated. Instead, the previous value of 

kBψ  is used as 

1 1 1, 1 2, 1k k k k k      Bψ E AE BU BU  (24) 

The term 1kBψ  can be calculated since all terms 

in the RHS of (24) are known and available. Thus, we 

propose a robust control law 

2, 1k k  BU Bψ  (25) 

We express the second term in the control law by 

substituting (24) into (25) to yield 

2, 1 1, 1 2, 1k k k k k      BU E AE BU BU  (26) 

 

4. Discrete Linear Quadratic Controller 

The Discrete Linear Quadratic (DLQ) controller has 

been efficiently used as an optimal controller in 

discrete linear systems. Substituting (26) into (21) 

yields 

 1 1, 1k k k k k    E AE BU B ψ ψ  (27) 

In order to apply the DLQ, a nominal model in the 

form of discrete linear system is suggested from (27) as 

1 1,k k k  E AE BU  (28) 

Then, the DLQ controller is given by 

1,k k k U K E  (29) 

The gain matrix 
kK  is calculated by minimizing a 

given cost function of the form [24] 

 
 

 

*

* *
1, 1,

1
*

1 1, 1

0
*

1, 1 1

0.5

0.5

N N

k k k k
N

k k k k

k

k k k k

L



 



 

 

  
 
 

   
 
  
 



E SE

E QE U RU

λ AE BU E

AE BU E λ

 (30) 

with respect to kE , 1,kU  and kλ , where kλ  is the 

Lagrange multiplier, Q  and R  are symmetric positive 

definite matrices.  As a result, 

* 1 *[ ]k k k
 K R B p B B p A  (31) 

where kp  is calculated as 

*
1

* * 1 *
1 1 1[ ]

k k

k k k




  

  



p Q A p A

A p B R B p B B p A
 (32) 

The algorithm starts from 0k   in (32) where 

1 p 0 . Then, kK  is calculated as (31). 0K  is 

calculated from (31) and (32) using 1 p 0 . 

Using (26) and (29), obtains the final control law  

   
1 2

1 1, 1 2, 1

k k k

k k k k k  

 

     

BU BU BU

I BK E AE B U U
 (33) 

Since 1, 1 2, 1 1k k k   U U U , final control law 

(33) can be represented as 

  1 1k k k k k     BU I BK E AE BU  (34) 

To calculate kBU  for 1k  , 0U  and 0E  as initial 

values must be known in advance. 0U  is given zero 

and 0E  is computed from 0 (0) (0) dE X X  where 

(0)dX  and (0)X  are given by the designer. 

In order to calculate 
kBU  in (34) by considering 

 dE X X  and  
  
 

q
X

q
, feedbacks of the joint 

positions, joint velocities and motor voltages are 

required. These feedbacks are kq , 1kq ,  kq , 1kq , 

and 1kU  which are available. In practice, measuring 

the voltage is common and optical encoder is 

conveniently used to measure the joint position and 

joint velocity.  

 

5. Stability Analysis 

Applying control law (33) on system (21) and using 

(24) results in the closed-loop system 

   1 1k k k k k    E A BK E B ψ ψ  (35) 

Since the DLQ controller provides kK  such that 

kA BK  is Hurwitz, thus system (35) is stable. Then, a 

bounded input  1k kB ψ ψ  to system (35) provides a 

bounded output kE . 
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The boundedness of lumped uncertainty ψ  is 

verified by the following proof. 

Proof: Electrical equation of the permanent magnet dc 

motor is given by 

a a b mRI LI k v    (36) 

where v  is the motor voltage, aI  is the  motor current 

and m  is the rotor velocity. R , L  and bk  represent 

the coefficients of armature resistance, armature 

inductance, and back-emf constant, respectively. 

By multiplying both sides of (36) by aI , one can 

obtain the power equation  

2
a a a a b m avI RI LI I k I    (37) 

Motor receives electrical power avI  to produce 

mechanical power b m ak I  [25]. The term 
2
aRI  is the 

loss in the windings and the term a aLI I  is the time 

derivative of magnetic energy.  

Taking integral of both sides of (37) gives 

2

0 0 0 0

t t t t

a a a a b m avI dt RI dt LI I dt k I dt       (38) 

with (0) 0aI  , we have 

2 2

0 0
0.5

t t

a a a b m avI dt RI t LI k I dt     (39) 

Since 
2 0aRI t   and 

20.5 0aLI  ,  

0 0

t t

b m a ak I dt vI dt                for 0t   (40) 

Therefore, the mechanical energy is bounded as 

(40). In the other words, the electrical energy, 
0

t

avI dt  

is the upper bound of mechanical energy, 
0

t

b m ak I dt .  

The upper bound of mechanical energy can be 

calculated from (40) as 

0 0

t t

b mu a ak I dt vI dt         for 0t   (41) 

where mu  is the motor velocity at the upper bound of 

mechanical energy specified as 
0

t

b mu ak I dt . By 

taking derivative of (41) with respect to time,  

mb u a ak I vI   (42) 

Thus, 

mb uk v   (43) 

Therefore, mu  is bounded as 

m /u bv k   (44) 

By using Assumption 3 one can imply that 

m max / bv k   (45) 

where maxv  is the maximum of motor voltage limited 

by the voltage limiter. 

From (36), it can be written that 

a aRI LI w   (46) 

where 

b mw v k    (47) 

v  is bounded as stated by Assumption 3 and m   is 

bounded in (45). Consequently, the input w in (46) is 

bounded. The linear differential equation (46) is a 

stable linear system based on the Routh-Hurwitz 

criterion. Since the input w is bounded, the output aI  

is bounded. From (46) 

a aLI w RI   (48) 

aI  is bounded since w  and aI  are bounded.  

Result1: In summary, if the motor voltage be bounded 

then the motor current, aI , its time derivative, aI , and 

the motor velocity,  m ,  are bounded [17]. The joint 

velocity, q , is proportional to motor velocity, m , by 

gear ratio. Thus, the joint velocity, q , is bounded. 

Appling this reasoning to all motors of the robot 

manipulator implies that the vectors  aI , aI  and q  are 

bounded. 

According to properties of the robot manipulator, 

the following assumption can be made [26].  

Assumption 4: Inertia matrix ( )D q is bounded as 

min max( )  I D q I  (49) 

where the known positive scalars min  and max  are 

the smallest and largest eigenvalues of  ( )D q , 

respectively.  

Assumption 5: Matrix ( , )C q q  is bounded as 

( , ) ( )cC q q q q  (50) 

where the known scalar ( )c q  is a known positive 

definite function of q .  

Assumption 6: Gravity vector ( )g q  is bounded as 

( ) ( )gg q q  (51) 

where ( )g q  is a known positive definite function  

of q . 
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For revolute joint robots the scalars min , max , 

( )c q  and  ( )g q  are constant [26]. 

From (6), we have 

 

 

1
1 1

1

1 1 1 1

( ) .

( )

( )


 



   

 

   
 
   
 

m m a

a m a

a m m a m b

q J r rD q K R

V R K rg q LI ξ

R K B r R K rC q,q K r q

 
(52) 

One can imply the boundedness of q  by 

considering (52). Note that in (52),  1 ( ) mJ r rD q  is a 

positive definite matrix, thereby its inverse is available. 

Matrices aR , mK , mJ , mB , r , bK  and L  are 

constant. ξ  in Assumption 2, V  in Assumption 3, 

( )D q  in Assumption 4, ( )C q,q  in Assumption 5, 

and  ( )g q  in Assumption 6 are bounded. In addition, 

aI  and q  are bounded in Result1. Therefore, all terms 

in the right hand side of (52) are bounded. Hence 

Result2: q  is bounded. 

The boundedness of φ  is implied by considering 

that all terms in the right hand side of (8) are bounded 

based on Assumptions 4, 5, 6, and Results 1, 2. Using 

(8) and Cauchy-Schwartz inequality, φ  is bounded as 

2

max

max max

c g  



   

 

aφ q q L I

ξ
 (53) 

where 
1  a mR K r  

Result3: φ  is bounded.  

The boundedness of ψ  is implied by considering 

that all terms in the right hand side of (10) are bounded. 

All matrices are constant. As implied in Results 1, 2, 3 

q , q  and φ  are bounded. Using (10) and Cauchy-

Schwartz inequality, ψ  is bounded as 

max1 2 max      ψ q q  (54) 

where 

1 1 1 1
1

ˆ ˆ ˆ ˆ     a m m a m mR K J r R K J r , 

1 1 1 1 1 1
2

ˆ ˆ ˆ ˆˆ ˆ         a m m a m m b bR K B r R K B r K r K r

Result4: ψ  is bounded. 

End of Proof. 

The boundedness of ψ  implies that 1k kψ ψ  is 

bounded. Since B N  is a constant, 1( )k kB ψ ψ  

is bounded. Therefore, the stable closed-loop system 

(35) provides bounded output kE  since input 

1( )k kB ψ ψ  is bounded.  

One can easily imply that 

k k k dX X E  (55) 

Thus, the boundedness of state vector kX  is 

verified due to the boundedness of kE  in the closed-

loop system (35) and the boundedness of desired 

trajectory kdX  in Assumption 1.  

The robust time-delay control law (26) has a main 

role in compensating the uncertainty. In the case of a 

much difference between the nominal model (28) and 

the actual system (27), the closed-loop system (35) is 

subject to a large uncertainty. The residual uncertainty 

in the closed-loop system (35) is reduced from a large 

value of kBψ to a small value of   1k kB ψ ψ  due 

to using the robust time-delay control law (26). As a 

result, the performance of control system is improved 

by reducing the residual uncertainty. The residual 

uncertainty  1k kB ψ ψ  will be very small when the 

uncertainty is smooth and the sample time   is very 

short. 

 

6. Simulation Results 

We simulate the proposed control law (34) on an elbow 

two-link revolute manipulator driven by permanent 

magnet dc motors, as shown in Fig. 1. The performance 

of controller is compared with the performance of 

RTOMNDR control given by [19], thus we use the 

same system for simulations. Details of the robot 

dynamics in (1) are given by 

11 12

12 22

( )
D D

D q
D D

 
  
 

 (56) 

1 2

2 2 2
11 1 2 1 1 2 2 1 2( 2 cos( ))

c c cD m l m l l l l q I I     

2

2
12 2 1 2 2 2( cos( ))

c cD m l l l q I  

2

2
22 2 2c

D m l I   

 

2 1 2 2 2 2 1 2 1 2 2

2 1 2 1 2

( , )

sin( ) ( )sin( )

sin( ) 0

c c

c

C q q

m l l q q m l l q q q

m l l q q



   
 
 

 

11 2 1 1 2 2 1 2

2 2 1 2

( )

( ) cos( ) cos( )

cos( )

c c

c

G q

m l m l g q m l g q q

m l g q q



   
 

  

 

where iq  for 2,1i  denotes the joint angle, il  is 

the link length, im  is the link mass, iI  is the link's 

moment of inertia given in the center of mass, cil  is 
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the distance between the center of mass of the link and 

the ith joint as shown in  Figure 1. The real parameters 

of manipulator and motors are given in Table 1 and 

Table 2, respectively. 

 
Table 1. Parameters of links 

I  m  cl  l  link 

5 15 0.5 1 1 

2 6 0.5 1 2 

 
Table 2. Parameters of dc servomotors 

Motor bK  mJ  mB  r/1  

1 0.26 0.0002 0.000817 107.82 

2 0.26 0.0002 0.00138 53.7063 

 
The desired repetitive trajectory is given by 

 cos(0.1 ) cos(0.1 )
T

dq t t   (57) 

   

   

cos cos(0.1 ) cos cos(0.1 ) cos(0.1 )

sin cos(0.1 ) sin cos(0.1 ) cos(0.1 )

dP

t t t

t t t

  

  



   
 

  

 
(58) 

where dq  is a vector of desired joint angles to provide 

the desired end point position in x-y plane denoted by 

dP . The end-point of robot goes and returns along the 

path. These two parts of trajectory obtain a cycle of 

period trajectory with a period of 20S . The desired 

trajectory is sufficiently smooth and the motors are 

strong enough such that the robot can track the desired 

trajectory. We run the simulations for two periods to 

illustrate the repetitive motion. 

The uncertainty may include the external 

disturbances, unmodeled dynamics, and parametric 

uncertainty. To consider the parametric uncertainty, all 

parameters of the nominal model used in the control 

law are given as 95%  of the real one. The external 

disturbance is given to the input of each motor as a 

random signal with the maximum value 4V  and the 

minimum value 4V  with a period of 2 S . The 

unmodeled dynamics is considered through the motor 

inductances that are not included in the nominal model. 

The uncertainty is unknown; however, we have to use 

an example of a bounded uncertainty to check the 

performance of the control system. The matrices Q  

and R  in (27) and (28) are given by 
8

4 410 Q I  and 

2 2R I  where n nI  is the n n  identity matrix. 

Simulation1: The initial position of the end point is set 

to  (0) 1 1P m  in the yx   plane while the initial 

position of the desired trajectory is given by 

 (0) 0.1242 1.7508dP m . The initial error is 

calculated as  (0) (0) 0.8758 0.7508dP P   . As a 

practical regard the motor voltages are limited to the 

maximum value of 40 V to protect the motors from 

over voltages. The end-point starts from initial point 

and after 6S  reaches to the desired path as shown in 

Figure 2. The task is repeated two times in 40S . The 

norm of tracking errors is vanished well after 6S  and 

comes under the 42.26 10 m  at the end in Figure 3. 

The motor voltages are under the permitted value of 

40V and behave well without any problems, as shown 

in Figure4. The jumps on the control efforts confirms 

that the control effort promptly reply to the external 

disturbances. As a result, the uncertainties are 

compensated well. 

Simulation 2. The control system is simulated with the 

zero initial error. The tracking error is ignorable with 

the maximum value of about 42.46 10xe m   and 

42.1 10ye m   as shown in Figure 5 and  

The control efforts behave well under the permitted 

value of 40V  and promptly reply to the external 

disturbances as shown in Figure 6. 

Simulation 3: A comparison is presented between the 

proposed method and the RTOMNDR control. 

All conditions including the initial errors are given the 

same as simulation 1 for comparing the results. The 

RTOMNDR has used a linear discrete time-variant 

nominal model for the robotic system. The model is 

dependent on the manipulator dynamics and motors' 

parameters. Then, a robust time-delay controller has 

been used to compensate differences between the actual 

system and nominal model. Finally, a time-optimal 

minimum-norm controller is applied to locate the poles 

of discrete system at the origin of complex plane. The 

tracking performance is very well such that the norm of 

tracking errors is vanished well after 1S  and comes 

under the 43.2 10 m  at the end in Fig. 7. The control 

efforts jump to the maximum values when starting, 

then behave well under the permitted values as shown 

in Fig. 8. 

Comparing the results shows that both controllers 

present competitive tracking performances. The 

tracking errors decrease faster in the RTOMNDR 

controller whereas the control efforts jump to the 

maximum values. In contrast, the control efforts of the 

RODR behave smoother and tracking errors reduce 

much more at the end. The RTOMNDR control is 

computationally extensive and depends on the 

manipulator dynamics whereas the RODR is free from 

manipulator dynamics, thus is computationally simple. 
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Fig. 1. Two-link elbow manipulator 

 

 

Fig. 2.Tracking by RODR control in the x-y plane 

 

 

  

  
Fig. 3. Tracking performance 

 

 

Fig. 4. Control efforts of the RODR control 

 

 

  

 
 

Fig. 5. RODR control without initial error Fig. 6. Control efforts without initial error 
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Fig. 7. RTOMNDR control in initial error Fig. 8. Control efforts of RTOMNDR control 
 

We have noticed that the nonlinearity, coupling and 

uncertainty in the robot dynamics is a challenge in 

applying the DLQ control. For this purpose, the voltage 

control strategy has been efficiently used to obtain a 

discrete linear time invariant system which is free from 

manipulator dynamics. 

 

7. Conclusions 

All nonlinearities and uncertainties have been 

considered as a lumped uncertainty in the model. Then 

a robust time-delay control has been employed to 

compensate the lumped uncertainty. As a result, a 

suitable discrete linear time-invariant model has been 

obtained to apply efficiently the DLQ control. The 

closed-loop system is stable according to the stability 

analysis while an optimal tracking performance by the 

DLQ control is provided and the robustness of control 

system in the presence of uncertainties is guaranteed 

using the robust time-delay controller. The control 

system can overcome a wide range of uncertainty 

including external disturbances, parametric uncertainty 

and unmodeled dynamics. 

The performance of robust time-delay control is 

highly improved if the uncertainty is smooth and the 

sampling period is sufficiently short. A comparison 

shows that the proposed controller is much simpler and 

much less computational than the RTOMNDR since it 

is free from manipulator dynamics. Its control efforts 

behave smoother than the RTOMNDR, however, the 

RTOMNDR is relatively faster than the proposed 

controller. 
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