شبیه سازی عددی و بررسی عملکرد آیرودینامیکی پره های الهام گرفته شده از بال حشرات

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی هوافضا، دانشکدگان علوم و فناوری میان رشته ای، دانشگاه تهران، تهران، ایران

2 استادیار، دانشکده مهندسی هوافضا، دانشکدگان علوم و فناوری میان رشته ای، دانشگاه تهران، تهران، ایران

10.22044/jsfm.2024.13786.3806

چکیده

یکی از روش‌های قابل استفاده در بهبود عملکرد آیرودینامیکی پره‌های پرنده‌های بدون سرنشین کوچک، الهام از بال گونه‌های متفاوت از جانوران مانند پرندگان و حشرات است. پژوهش حاضر به بررسی عملکرد آیرودینامیکی پره‌های الهام گرفته شده از بال حشرات می‌‌پردازد و تاثیرات شکل پره‌‌ها بر نیروی پیشران، گشتاور و بازدهی پره‌ها مورد مطالعه قرار گرفته است. در این پژوهش از شکل بال چهار گونه حشرات شامل همیپترا، اورتوپترا و نئوروپترا الهام گرفته شده است. شبیه‌سازی عددی با استفاده از تکنیک قاب مرجع متحرک ( Multiple Reference Frame ) و مدل‌سازی آشفتگی k-ω SST در شرایط هاور و در بازه‌ی سرعت دورانی 4000 تا 8000 دور بر دقیقه برای پره با قطر 24/0 متر و ایرفویل Eppler E63 تعریف شده است. اعتبار سنجی نتایج شبیه‌سازی عددی با استفاده از نتایج تجربی بر روی پره DJI Phantom 3 انجام شده است و نتایج با دقت قابل قبولی با نتایج دیگران ارزیابی شده است. نتایج نشان می‌دهد که پره‌های الهام گرفته شده، دارای نیروی پیشران بیشتر و در یک نیروی ثابت، پره‌های الهام گرفته شده دارای سرعت دورانی کمتری هستند. پره نئوروپنرا با در نظر گرفتن معیار بازدهی پره، با 74/6 درصد بهبود نسبت به پره DJI Phantom 3 دارای بهترین عملکرد است.

کلیدواژه‌ها

موضوعات


[1] Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2018). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 119293. https://doi.org/10.1016/j.techfore.2018.05.004
[2] Azwan Sapit, Mohamad Faiz Masjan, & Saad Kariem Shater. (2021). Aerodynamics Drone Propeller Analysis by using Computational Fluid Dynamics. J. Complex Flow, 3(2), 12–16.
[3] R Deters, R. W., Ananda Krishnan, G. K., & Selig, M. S. (2014). Reynolds Number Effects on the Performance of Small-Scale Propellers. 32nd AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2014-2151
[4] Ramasamy, M., Johnson, B., & Leishman, J. G. (2008). Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor. J. American Helicopter Society, 53(4), 412. https://doi.org/10.4050/jahs.53.412.
[5] Yilmaz, E., & Hu, J. (2018). CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions (pp. 27–28).
[6] Hassanalian, M., Radmanesh, M., & Sedaghat, A. (2014). Increasing Flight Endurance of MAVs using Multiple Quantum Well Solar Cells. Int. J. Aeronautical and Space Sciences, 15(2), 212–217. https://doi.org/10.5139/ijass.2014.15.2.212
[7] Joachim Schömann. (2014). Hybrid-Electric Propulsion Systems for Small Unmanned Aircraft.
[8] Brandt, J., & Selig, M. (2011). Propeller Performance Data at Low Reynolds Numbers. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2011-1255
[9] Gomez, S., Gilkey, L. N., Kaiser, B., & Poroseva, S. V. (2014, June 16). Computational Analysis of a Tip Vortex Structure Shed from a Bio-inspired Blade. Presented at the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA. https://doi.org/10.2514/6.2014-3253
[10]  رضواندوست، مصطفی، پیرکندی، جاماسب، محمودی، مصطفی، و میرزاپور، داریوش. (1393). تحلیل عددی عملکرد استاتیکی یک ملخ نمونه و مقایسه آن با نتایج تجربی و تئوری. کنفرانس بین المللی انجمن هوا فضای ایران. SID. https://sid.ir/paper/887835/fa
 
[11] Ning, Z., & Hu, H. (2017). An Experimental Study on the Aerodynamic and Aeroacoustic Performances of a Bio-Inspired UAV Propeller. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3747
[12] Deters, R. W., Kleinke, S., & Selig, M. S. (2017). Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3743
[13] Hintz, C., Khanbolouki, P., Perez, A. M., Tehrani, M., & Poroseva, S. (2018). Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller. 2018 Applied Aerodynamics Conference. https://doi.org/10.2514/6.2018-3645
[14] Shamsudin, S. S., & Madzni, M. Z. (2021). Aerodynamic Analysis of Quadrotor UAV Propeller Using Computational Fluid Dynamic. J. Complex Flow , 3(2), 28–32.
[15] Moslem, F., Masdari, M., Fedir, K., & Moslem, B. (2022). Experimental investigation into the aerodynamic and aeroacoustic performance of bioinspired smallscale propeller planforms. Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Eng., 237, 095441002210913. https://doi.org/10.1177/09544100221091322
[16] Mozafari, M., & Masdari, M. (2023). Owl Aeroacoustics: Analysis of a Silent Flight. J40, 39.3(1), 99–118. https://doi.org/10.24200/j40.2022.60494.1643
 [17] Kutty, H., & Rajendran, P. (2017). 3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade. Aerospace, 4(1), 10. https://doi.org/10.3390/aerospace4010010
[18] DJI Team, “phantom-3-standard,” DJI. https://www.dji.com (accessed 2021).
[19] “Phantom 3 Standard - User Manual V 1.4,” Sep. 01, 2015.
[20] Ábrahám, L. (2020). A new Creoleon sp. n. (Neuroptera: Myrmeleontidae) from Socotra (Yemen). Natura Somogyiensis, 35, 37–44. https://doi.org/10.24394/natsom.2020.35.37
[21] Hectonichus, Pyrgomorphidae - Phymateus karschi. [Is licensed under CC BY-SA 3.0]. Available:https://creativecommons.org/licenses/by-sa/3.0/?ref=openverse
[22] Constant, J., & Pham, T. (2017). Review of the clavatus group of the lanternfly genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae). European J. Taxonomy, 305, 1–26. https://doi.org/10.5852/ejt.2017.305
[23] Zhou, W., Ning, Z., Li, H., & Hu, H. (2017). An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3744
[24] Ansys® Fluent, Release 2021 R1, Help System, Ansys Fluent Theory Guide, ANSYS, Inc.
 
[25] GarofanoSoldado, A., SanchezCuevas, P. J., Heredia, G., & Ollero, A. (2022). Numericalexperimental evaluation and modelling of aerodynamic ground effect for smallscale tilted propellers at low Reynolds numbers. Aerospace Science and Technology, 126, 107625. https://doi.org/10.1016/j.ast.2022.107625
[26] Han, H., Xiang, C., Xu, B., & Yu, Y. (2019). Aerodynamic performance and analysis of a hovering micro-scale shrouded rotor in confined environment. Advances in Mechanical Engineering, 11(4), 168781401882332. https://doi.org/10.1177/1687814018823327
[27] Chevula, S., Chillamcharal, S., & Maddula, S. P. (2021). A Computational Design Analysis of UAV’s Rotor Blade in Low-Temperature Conditions for the Defence Applications. Int. J. Aerospace Eng., 2021, e8843453. https://doi.org/10.1155/2021/8843453
[28] Lopez, O. R., Escobar, J., & Andrés Pociña Pérez. (2017). Computational Study of the Wake of a Quadcopter Propeller in Hover. https://doi.org/10.2514/6.2017-3961
[29] John David Anderson. (1995). Computational Fluid Dynamics. International Marine.
[30] Bengt Andersson. (2012). Computational fluid dynamics for engineers. Cambridge ; New York: Cambridge University Press.
[31] Schetz, J. A., & Bowersox, R. D. W. (2012). Boundary layer analysis (pp. 240–241). Reston, Va. American Institute Of Aeronautics And Astronautics.
[32] Li, Y., Yonezawa, K., Xu, R., & Liu, H. (2021). A Biomimetic Rotor-configuration Design for Optimal Aerodynamic Performance in Quadrotor Drone. J. Bionic Eng., 18(4), 824–839. https://doi.org/10.1007/s42235-021-0069-0
 [33] Wilcox, D. (2008). Formulation of the kω Turbulence Model Revisited. Aiaa JAIAA J, 46, 2823–2838. https://doi.org/10.2514/1.36541
 [34] Menter, F. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. https://doi.org/10.2514/6.1993-2906
[35] Gudmundsson, S. (2014). The Anatomy of the Propeller. In General Aviation Aircraft Design (pp. 581–659). https://doi.org/10.1016/b978-0-12-397308-5.00014-3