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Abstract 
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper 

proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, 

first, the suspension system and road roughness are expressed mathematically. Then, the suspension system 

model will identify using neural networks. The results of this step show that the neural networks model of 

suspension system will be well. The mean and max errors are 0.0013% and 0.0012, respectively. Finally, the 

inverse suspension system model is extracted by using neural networks to determine the relationship between 

road roughness and vibration or displacement. Using this step to predict the road quality. In this step, the mean 

error is 2.1% and max error is 0.028. Therefore, the results show that the proposed method can be used to identify 

the suspension system, inverse suspension system and predict the quality of roads. 

Keywords: Road roughness prediction; Neural networks; Suspension system; Modeling. 

 

 
1. Introduction 

Nowadays, passenger and cargo transport are the 

most important financial issues for every country. 

The quality of transport depends on factors such as 

road quality [1]. While a vehicle travels on the road, 

the different parts of vehicle vibrate. Factors such as 

tier dynamic, suspension system, road roughness and 

vehicle body structure affect the scale of vibration. 

Vehicle vibration is mainly due to road roughness 

[2,3]. The roughness of a road surface is an important 

measure of road condition and a key factor in 

determining vehicle operating costs on poor quality 

surfaces [1]. Acceleration measurement has some 

applications in control suspension system [2, 4, 5], 

airbag opening in vehicles in case of accident, 

detecting errors in mechanical systems [6, 7], 

evaluating convenience of vehicle [8, 9] and 

evaluating quality of the road [1, 10, 11, 12]. Road 

noises in vehicles appear in vertical and horizontal 

acceleration. The effect of road roughness on the 

design and operation of road vehicles has been a 

subject of intensive research since 1960. In order to 

determine road quality, vehicle vibrations due road 

roughness is acquired by accelerometer. The quality 

of road is determined by the chain processes of 

vibration [1, 11]. A number of instruments have, 

therefore, been developed for measuring roughness, 

but many of them are expensive, slow in use or 

require regular calibration [1]. They can be 

categorized either as response-type instruments or 

profiling devices [10]. In order to evaluate the road 

quality, this paper presents a new method based on 

response-type instruments. The main advantage of 

the proposed method is low cost and showing the 

road profile. This research studies and combines the 

suspension system model, road roughness, neural 

networks and inverse suspension system model. 

Suspension system modeling [2, 3, 4, 13, 14] is 

used in designing active suspension system, 

evaluating convenience of vehicle [8, 9] and 

evaluating quality of the road. 

The impressive advantages of neural networks 

are the capability of solving highly non-linear and 

complex problems and the efficiency of processing 

imprecise and noisy data [13]. Neural networks have 

been widely used to estimate the nonlinear model of 

system and control of system [3, 13, 15, 16, 17]. 

Also, neural networks have been used to estimate the 

nonlinear inverse model of system in order to control 

and observe data [13, 17, 18, 19]. Mathematically, 
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the inverse problems are classified as ill-posed 

problems. A problem is considered well-posed if 

there exists a solution and it is unique and stable 

related to the input data. In general, these conditions 

are not satisfied for the inverse problems, because of 

small variations in the input data, such as error of 

measurement, can cause large oscillations on the 

solution. They might not have a strict solution. The 

solution should not be unique and/or should not 

depend continuously on the data. Hence, their 

mathematical analysis is subtle. However, they have 

many applications in engineering, physics and other 

fields. Usually the inverse problem, that is assumed 

to be the ill-posed problem, is presented as a well-

posed functional form, the solution of which is 

obtained through the use of optimization procedures 

[19].  

The organization of this paper is as follows: in 

section 2 a short review of accelerometer is 

presented; in section 3 the model of suspension 

system and road roughness is introduced; in section 

4, the model of the suspension system and the inverse 

suspension system model with neural networks is 

introduced; and finally, the concluding remarks are 

described in section 5. 

 

2. Accelerometer 
An accelerometer is a device that can measure 

acceleration in single-axial or multiple-axial [11]. 

The output of an accelerometer is a small signal 

amplified with an amplifier. A modern accelerometer 

as shown in Fig. 1 contains a Micro Electro 

Mechanical Systems (MEMS) sensor, a regulator, an 

analog to digital converter, a processor and a TTL to 

RS485 converter. The proposed accelerometer which 

is built over a strong magnet is shown in Fig. 2. It is 

movable and can easily be installed on the suspension 

system. Sensor size is about 67×35×20 mm and its 

sampling rate is 500 samples per second and can 

transfer information with 980 Kbit/s. An 

accelerometer which measures wheel acceleration is 

mounted on wheel axes. A sample measured with this 

device is shown in Fig. 3. This figure shows x,y,z 

acceleration versus speed of vehicle. This figure 

shows that there is a relationship between road 

roughness and acceleration.  

 

 
Fig. 1. Internal block diagram of an accelerometer 

 

3. The System Modeling 
Analysis of dynamic processes of real objects can be 

expensive, time-consuming and, in certain cases, 

impossible, whereas experiments can be easily 

carried out on models which can be used to simulate 

dynamic responses. For this purpose, physical and 

mathematical models of an object should be built and 

followed by estimation of model parameters and 

verification. This section describes the model of the 

suspension system and road roughness. 

 

 

Fig. 2. The produced accelerometer 

 

 
Fig. 3. The suspension system accelerations on a bump 

with a -10 Cm length and a-5 Cm depth 

 

I. Suspension System Modeling 

In order to address these issues and be able to apply 

proposed method, a suspension system model is 

created. The suspension system model is shown in 

Fig. 4 and equations (1) and (2) show the dynamic of 

the system [5].  

. ( ) ( )s c s w c s w cm x k x x c x x     (1) 
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where sm , usm , sk , usk , sc  and usc  denote the 

mass, stiffness and damping rate of the sprung and 
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un-sprung elements, respectively. The variables cx ,

wx  and rx  are the displacements of the sprung mass, 

un-sprung mass and road, respectively. These 

equations can be written in a state-space form 

uBXAX 11   (3) 

where  Tccwwwr xxxxxxX  ,,, 
 
and  rxu  . rx

 
is the disturbance to the system. 

The parameters of the suspension system model 

are shown in Table 1.  

 

 
Fig. 4. The suspension system model 

 
Table 1. The parameters of suspension system model 

ms mus Cs Cus Ks Kus 

243 

Kg 
40 

Kg 
370 

N/m/Sec 
414 

N/m/Sec 
14671 

N/m 
124660 

N/m 

 

II. Road Modeling 

Many researchers have modeled road roughness 

[4,8,14,20]. In [20] equation (4) was used to describe 

the road roughness. 

)()()(2)( 00 twVGtxnVtx qrr    (4) 

where rx , V , 0n ,
 

)( 0qG , 0 and w are 

displacement, speed, reference spatial frequency, 

road power spectral density, reference spatial angular 

frequency and noise, respectively. The equation (5) is 

used if the speed of the vehicle is time variable.  

)()()()()(2)( 00 twtVGtxntVtx qrr    (5) 

In order to learn neural networks, model and 

inverse model, the block diagram of equation (4), as 

shown in Fig. 5, is used to generate road roughness. 

In [14] the bump is simulated as sin function, that 

shown in equation (6) and Fig. 6. It is assumed that 

the vehicle experiences a sudden bump with 

amplitude of 11cm, the profile of which is shown in 

Fig. 6 and described by equation (6). 

 

 
Fig. 5. The block diagram model of the road roughness 
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where a , V and λ are amplitude of roughness, speed 

of the vehicle and half of the sin wavelength, 

respectively. In this paper, equation (6) is used to test 

neural networks model and neural networks inverse 

model. 

 

 
Fig. 6. Road displacement model 

 

4. System Identification with Neural 

Networks 
The neural networks in this research are used to 

identify a nonlinear model of suspension system and 

inverse suspension system model. One of the well-

known nonlinear model structures is Non-linear 

Auto-Regressive with eXogenous (NARX). It has 

been widely used for modeling the nonlinear system 

dynamics. There are two methods for identifying a 

system with neural networks [16]. In first method, 

shown in equation (7), the output of the real system is 

used for learning neural networks model and in the 

second method, shown in equation (8), the output of 

the neural networks model is used for learning the 

networks. This issue uses second method to identify 

the suspension system model as shown in Fig. 7. In 

order to identify nonlinear model, input output data 

are acquired by driving a car on a given road 

roughness. 

 

ms

csk s

cuskus

mus

x r

xw

x c

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

Times (sec)

R
o

a
d

 D
is

tu
rb

a
n

c
e

 I
n

p
u

t 
w

(m
)



 
 

 

Journal of Solid and Fluid Mechanics, Vol. 2, No. 3, 2012 Soleimani and Sahebi          66 

 

 )(,...),1(,)(,...),()(ˆ ntytymtutufty   (7) 

 )(ˆ,...),1(ˆ,)(,...),()(ˆ ntytymtutufty   (8) 

 

 
Fig. 7. Modeling a real system by neural networks 

 

I. The Suspension System Modeling with Neural 

Networks 

In order to sampling the equations (1) and (2) there 

are 

)()1( kxkxxT www 
 

)()1( kxkxxT ccc 
 

)()1( kxkxxT rrr 
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)1()(2)1(2  kxkxkxxT cccc  

(9) 

where T is the sampling period. Therefore, replacing 

these relations into equations (1) and (2) and using 

the n-order approximation method, the model can be 

denoted in the discrete form as 
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where A-L are constant that depend on sampling 

period, mass, stiffness and damping rate of the sprung 

and un-sprung elements, also )(kxc  and )(kxw  are 

the sprung mass and un-sprung mass displacement, 

respectively. For example in equation (10) 

)/( TcmmB sss  . These equations can be show 

as: 
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A feed-forward, multi-layer perceptron (MLP) 

whit 6 inputs, one hidden layer and one output is used 

to identify the system. The output of neural networks 

can be shown as: 

k

N

i

N

j

kiijijk bWbXWy
h i

 
 1 1

.)(  (14) 

where iN , hN , ijW , ikW , jX , jb and kb are number  

 

of inputs, number of neurons in hidden layer, weights 

between input and hidden layer, weights between 

output and hidden layer, inputs, bias of hidden 

neurons and bias of output neuron, respectively. The 

sigmoid activation function (.))(  has been used in 

the hidden layer and linear activation function in the 

output layer. 

Back propagation neural networks most 

commonly used to update weights of neural 

networks. Therefore, the error back propagation was 

used for the system identification. Training inputs are 

supplied to the input layer of the network in a 

forward sweep such that the output of each element is 

computed layer by layer. The output of the final layer 

is compared with the desired output such that the 

error is back-propagated through the previous layers. 

The objective of the identification process is to 

minimize the error signals )(ˆ)()( kxkxke ccc  , 

)(ˆ)()( kxkxke www 
 

when the plant and neural 

networks model are subjected to the same input rx  

(see Fig. 8), where )(ˆ kxc , )(ˆ kxw are the neural 

networks model output,
 

)(kxc , )(kxw are the plant 

output. Weights between input layer and hidden layer 

are updated as: 
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where   is learning rate and   is momentum term 

and )(2 tE  is propagation error between the hidden 

layer and the input layer. Weights between hidden layer 

and output layer are updated as 

)1(
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)(1 tE  is error between output layer and hidden 

layer. Equation (4) is used to prepare road roughness 

on the wheels of the vehicle. The system input is road 

roughness and the outputs of the real system are 

displacement on the sprung mass and un-sprung 

mass. The inputs to neural networks are random road 

roughness, delayed of random road roughness, 

outputs and delayed of outputs. Therefore, the neural 

networks model uses plant input, previous plant 

inputs, and previous neural networks model outputs 

to predict values of the plant output. This step is 

shown in Fig. 8. To account for interaction with other 

parts of vehicle and to close the simulation to real 

world, the white noise is added to inputs of neural 

networks during learning. 

In learning process, the speed is assumed to be  

20 m/s. The inputs of neural networks model are 6 

and the outputs are 2. Only one hidden layer with 4 

neurons was sufficient to obtain satisfactory results. 

The sigmoid activation function has been used in the 

hidden layer and linear activation function in the 

output layer. 
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Fig. 8. The suspension system modeled by neural 

networks 

 

The vehicle moves over different road roughness 

and produces accelerations and displacements. The 

neural networks learn the system from these inputs 

and previous inputs and outputs. The estimation and 

validation data sets are presented in Fig. 9 to Fig. 12. 

These figures show the comparison between outputs 

of the real model and neural networks model. The 

mean error in Fig. 12 is 0.0013% and max error is 

0.0012. 

 

 

Fig. 9. Displacement of the sprung mass for passing over 

the bump 

 

 

Fig. 10. Displacement of un-sprung mass for passing 

over the bump 

 

 
Fig. 11. Displacement of the sprung mass for passing 

over random roughness 

 

 
Fig. 12. Displacement of un-sprung mass for passing 

over random roughness 

 

II. Inverse Modeling Suspension System with 

Neural Networks 

The suspension system was identified in previous 

section. In this section, a method is proposed to 

identify the inverse model of the suspension system. 

Therefore, the overall method can be shown as  

Fig. 13. 

 

 
Fig. 13. Proposed method to predict road roughness 

 

In Fig. 13, wwr xxx ,, and rx̂ are the road 

roughness, displacement, acceleration and predicted 

road roughness, respectively. The neural networks 

based on the inverse modeling are implemented to 

predict the road roughness. The vibration data used 

for training and testing the inverse model is generated 

when the vehicle travelling on the road. Based on 

previous sections, the accelerations of the sprung and 

un-sprung mass are measureable. The displacement 

can be calculated as 
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where  is acceleration and 0)0(  . 

Therefore, the inputs of neural networks are 

accelerations and displacement and the output is road 

roughness. In other words, inputs for neural networks 

as inverse model are outputs of suspension system 

model. As shown in Fig. 14, the neural networks 

learn the inverse suspension system to predict road 

roughness. If the errors close to zero, then the inverse 

suspension system model is identified by neural 

networks.  

 

 
Fig. 14. Inverse modeling suspension system by neural 

networks 

 

The input-hidden and hidden-output weights of 

neural networks, that identify the inverse suspension 

system, are shown in Table 2 and Table 3. In these 

tables X and b are inputs and bias, respectively. 

 
Table 2. the input-hidden weights of neural Networks 

(Nr=Neuron) 

 Nr.1 Nr. 2 Nr. 3 Nr. 4 

X1 2.35 1.59 0.75 2.80 

X2 1.72 -4.56 3.63 -0.01 

X3 3.52 2.28 -1.52 2.98 

X4 3.56 -0.30 0.77 -2.43 

X5 -1.38 6.06 -7.17 4.96 

X6 1.95 -4.65 3.55 4.11 

X7 1.91 2.38 0.10 -1.37 

b -1.15 -0.08 0 1.98 
 

 
Table 3. the hidden-output weights of neural Networks 

Hidden Neuron Output Neuron 

1 0.00029744 

2 -0.0011246 

3 8.7651 

4 0.00077146 

b -0.0237 
 

 

The results of this step are shown in Fig. 15 and 

Fig. 16. The mean error that is shown in these figures 

are 2.1% and max error is 0.028. Therefore these 

figures show that the proposed method in this paper 

presents a perfect solution to predict the quality of 

roads. 

 
Fig. 15. Bump roughness prediction by neural networks 

 

 
Fig. 16. Random roughness prediction by neural 

networks 

 

5. Conclusion 

When a vehicle travels along a road, different parts of 

vehicle will be vibrating. Vehicle vibration is mainly 

due to road roughness. The main contribution of this 

paper is to predict road roughness based on vertical 

acceleration in vehicles by using neural networks. To 

this end, first, the suspension system model and road 

roughness were introduced. Then, the suspension 

system model was identified using neural networks. 

The results of this step are shown in Fig. 9 to Fig. 12. 

These figures and mean error (0.0013%) show that 

the neural networks model of suspension system will 

be well. In third step, using neural networks, the 

inverse suspension system model is identified in 

order to determine the relationship between road 

roughness and vibration or displacement. The mean 

error is 2.1%, also results of this step are shown in 

Fig. 15 and Fig. 16. Therefore, the proposed method 

in this paper presents a perfect solution to predict the 

quality of roads. Unfortunately, due to paucity of 

previous research on this issue, numerical 

comparison is not possible. 
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