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Abstract 
This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory 

system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic 

controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. 

Then, to overcome the key drawback of fuzzy logic controller, i.e., the lack of systematic methods to define fuzzy 

rules and fuzzy membership functions, fuzzy PI controller are optimized by Particle Swarm Optimization with 

Linearly Decreasing Weight (LDW-PSO) algorithm, which is a novel evolutionary computation technique. 

Simulation results show the effectiveness of the proposed optimal fuzzy PI controller in terms of accuracy and 

time margin. 
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1. Introduction 
Diabetes is a group of diseases marked by high levels 

of blood glucose resulting from defects in insulin 

production, insulin action, or both. This high blood 

sugar produces the classical symptoms of polyuria 

(frequent urination), polydipsia (increased thirst) and 

polyphagia (increased hunger). There are three main 

types of diabetes. Type I diabetes, type II diabetes and 

gestational diabetes. Type I diabetes results from the 

body's failure to produce insulin, and presently requires 

the person to inject insulin. Type II diabetes results 

from insulin resistance, a condition in which cells fail 

to use insulin properly, sometimes combined with an 

absolute insulin deficiency. Gestational diabetes is 

occurred when pregnant women, who have never had 

diabetes before, have a high blood glucose level during 

pregnancy. It may precede development of type II 

diabetes; here the emphasis is on type II diabetes. As in 

2000 was estimated at least 171 million people around 

the world suffer from diabetes [1]. 

Type II diabetes mellitus is determined by 

destruction of the insulin-producing beta cells of the 

islets of Langerhans in the pancreas resulting to insulin 

shortage. This type of diabetes can be further classified 

as immune-mediated or idiopathic. The majority of 

type II diabetes is of the immune-mediated nature, 

where beta cell dissipation is a T-cell mediated 

autoimmune assault [2]. There is no recognized 

preventive measure against type I diabetes, which 

causes nearly 10% of diabetes mellitus cases in North 

America and Europe. Most impressed individuals are 

otherwise healthy and of a normal weight when 

symptoms of diabetes are appeared. Sensitivity and 

reaction to insulin are generally regular, particularly in 

the primary steps. Type I diabetes can affect children or 

adults but was traditionally called "juvenile diabetes" 

because most patients with this type of diabetes are 

children. Brittle diabetes, also known as unstable 

diabetes or labile diabetes, relates to a type of insulin- 

affiliate diabetes determined by dramatic and frequent 

fluctuations in glucose levels, often happening for no 

specific reason. The outcome can be atypical and 

unexpected hyperglycemia, mostly with ketosis, and 

sometimes critical hypoglycemia. Brittle diabetes 

happens no more mostly than in 1% to 2% of  

diabetics [3]. 

Over time, diabetes can lead to side effects, 

specifically, diabetic retinopathy, diabetic neuropathy 

and diabetic nephropathy. Also there is an increasing 

risk of facing to heart failure and stroke in diabetic 

patients. Eventually, the general risk of death among 

individuals with diabetes is at least double the risk of 

people without diabetes. The World Health 

Organization (WHO) apprises that over 180 million 
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people in the world have diabetes and this statistic is 

estimated to be 360 million people by 2030. In 2005, it 

has been estimated that 1.1 million people have died 

because of diabetes. When ranking diseases in terms of 

mortality, diabetes is the fifth cause of death, after 

communicable diseases, cardiovascular diseases, 

cancer and injury [4]. 

Medical sciences have more emphasis on 

prevention and in case of illness only offer a general 

treatment. In recent years to improve treatment of 

diabetes new instruments are designed by using 

biomedical engineering for instance insulin pump. The 

insulin pump is a medical device used for the 

administration of insulin in the treatment of diabetes 

mellitus, also known as continuous subcutaneous 

insulin infusion therapy. The insulin pump has 

application in the treatment of both types of diabetes 

[5–8], but what is important here is designing of an 

appropriate controller for insulin pump. The main 

features of the appropriate glucose controller are: 1) the 

controller should minimize the taken dosage of insulin. 

See [9, 10], 2) the controller should lower blood 

glucose level in the shortest possible time until its 

allowed range, i.e. among 70 mg/dl and 120 mg/dl 

before meals and under 180 mg/dl after meals [11]. See 

[12, 13] and 3) because of the diabetes model of every 

individual is exclusively for itself, the controller should 

have suitable performance for all diabetic patients. It 

means that the controller must have robust performance 

against parameter uncertainties that exist in parameters 

of diabetes model. See [14–16]. 

To achieve aforementioned objectives, some 

classical controllers have been proposed to control the 

blood glucose level in people with diabetes [17–22]. 

Despite the good performance of these controllers, they 

do not have the capabilities to deal with uncertainties 

that there are in biological models. Furthermore, the 

classical controllers cannot appropriately counter 

nonlinear and complex systems. As a result, if these 

controllers are used in practice it is likely that they 

would failed while applying to an actual patient. 

In recent years, researchers have extensively used 

the fuzzy logic for modeling, identification, and control 

of highly nonlinear dynamic systems [23]. Many 

researchers tried to handle blood glucose regulation 

using fuzzy controller [24–27]. In [24], a comparative 

study between ordinary PID and a fuzzy logic 

controller with assumption of continuous insulin 

infusion has been represented whereas both controllers 

are designed for the purpose that maintaining blood 

glucose level around 60-100 mg/dL before eating and 

under 140 mg/dL after eating. In [25], a fuzzy 

controller based on ordinary PID controller is designed. 

In [26], the efficiency of fuzzy closed-loop controller 

has been compared to ordinary PID controller in 

presence of intense initial conditions including an 

unusual meal disturbance, variations in parameters of 

system and a white noise that indicates sensor's error. 

In [27], the optimal Linear Quadratic Regulator (LQR) 

and classical fuzzy logic controller has been proposed.  

In this paper, the superiority of fuzzy-PI controller 

to the other controllers is shown. The proposed 

controller has the quickest response. It is capable to 

eliminate errors caused by the intense initial 

circumstances and the restore blood glucose level to its 

basal amount in duration of nearly an hour. The 

proposed controller among other controllers has the 

smallest overshoot when facing with a large 

disturbance due the exogenous glucose meal after 

accessing to its steady state. 

Although there are a number of distinguished 

advantages of the fuzzy logic controllers over the 

classical controllers such as they are not so sensitive to 

the variation of system structure, parameters and 

operation points as well as can be easily implemented 

in a large scale nonlinear system, but, one drawback of 

them is the lack of systematic methods to define fuzzy 

rules and fuzzy membership functions. Most fuzzy 

rules are also based on human knowledge and differ 

among persons despite the same system performance. 

On the other hand, it is difficult to assume that the 

given expert’s knowledge captured in the form of the 

fuzzy controller leads to optimal control. Consequently, 

the effective approaches for tuning the membership 

function and control rules without a trial and error 

method are significantly required. Because of this, in 

this paper, the idea of employing Particle Swarm 

Optimization (PSO) algorithm to solve the 

combinatorial optimization problems is proposed.  

Recently, Particle Swarm Optimization (PSO) 

algorithm has been becomes available and promising 

techniques for real world optimization problems [28]. 

Compared to GA, PSO takes less time for each 

function evaluation as it does not use many of GA 

operators like mutation, crossover and selection 

operator [29]. Due to the simple concept, easy 

implementation and quick convergence, nowadays PSO 

has gained much attention and wide applications in 

different fields [30]. 

The contribution of this paper is to propose a new 

approach based on the modified PSO algorithm, 

namely Particle Swarm Optimization with Linearly 

Decreasing Weight (LDW-PSO), for optimal design of 

a fuzzy logic based proportional integral controller in 

type I diabetes. This proposed approach, called the 

optimal fuzzy-PI controller, is utilized to obtain 

optimal solutions. This algorithm is utilized for 

learning the control rules of the fuzzy logic controller, 

and applied to optimize membership functions and 

control rules. Furthermore, the efficiency of the 

proposed controller will be demonstrated in this paper. 

 

2. Insulin-glucose dynamical model 

Bergman’s model is the most popularly utilized model 

in the literature, approximates the dynamic response of 

a diabetic patient’s blood glucose concentration to the 
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insulin injection [31]. The model equation are given by 

[32] 

dG/dt = –P1(G – Gb) –XG + D(t)  

dX/dt = –P2X + P3(I – Ib) (1) 

dI/dt = –n(I – Ib) + γ(G – h)+  + U(t)    

where G(t) shows the plasma glucose concentration at 

time t (mg/dl), X(t) is the generalized insulin variable 

for the remote compartment (1/min), I(t) is the plasma 

insulin concentration at time t (μU/ml), Gb is the basal 

value of plasma glucose (mg/dl), Ib is the basal value of 

plasma insulin (μU/ml). p1, p2, p3, n, h, γ are 

parameters of Bergman minimal model. n is the first 

order decay rate for insulin in plasma (1/min), h is the 

threshold value of glucose above which pancreatic β-

cells release insulin (mg/dl), and γ is the rate of the 

pancreatic β-cells’ release of insulin after the glucose 

injection and with glucose concentration above h 

[(μU/ml) min-2 (mg/dl)-1]. The term γ[G(t)-h]+ in the 

third equation of the model acts as an internal 

regulatory function that formulates the insulin secretion 

in the body, which does not exist in diabetic patients. 

The available clinical data indicates that the value of p1 

parameter for diabetic patient will be significantly 

reduced and it can be approximated as zero [33]. Model 

parameters and their values are presented in reference 

[34]. It is noticeable that these values were calculated 

for a person of average weight and vary from patient to 

patient which makes the design of controller a more 

challenging task. Finally, D(t) represents the meal 

glucose disturbance and can be modeled by decaying 

exponential function of the following form [35]: 

D(t) = 0.5exp(−0.5 t) , t ≥ 0 (2) 

 

3. Sugeno Type Fuzzy Inference 

In this section Sugeno method of deductive inference 

for fuzzy systems based on linguistic rules has been 

introduced. The Sugeno procedure was recommended 

in an endeavor to expand a systematic method to 

producing fuzzy rules from a certain input–output data 

collection. A generic rule in a Sugeno model, which 

has two-inputs x and y, and output z, is as follows: 

 

IF x is A and y is B, THEN z is z = f (x, y) 

 

where z = f (x, y) is a crisp function as a result. 

Generally f (x, y) is a polynomial function in the inputs 

x and y, but it can be any public function until it 

characterizes the output of the system inside the fuzzy 

area determined in the antecedent of the rule to which it 

is exerted. When f (x, y) is a constant the inference 

system is known as a zero-order Sugeno model, which 

is a particular case of the Mamdani system in which 

each rule’s resultant is determined as a fuzzy singleton. 

When f (x, y) is a linear function of x and y, the 

inference system is known as a first-order Sugeno 

model, which has been used in this article. In [36] was 

indicated that the output of a zero-order Sugeno model 

is a flat function of its input variables until the neighbor 

membership functions in the antecedent have adequate 

overlap. Versus, the overlap of the membership 

functions as a result of a Mamdani model does not have 

a definitive efficacy on the flatness; it is the overlap of 

the antecedent membership functions that specifies the 

flatness of the resulting system conduct. 

In a Sugeno model each rule has a crisp output, 

presented by a function; for this reason the total output 

is gained via a weighted average defuzzification (Eq. 

(3)). This procedure eschews the time consuming 

methods of defuzzification needed in the Mamdani 

model. 

 

 

Fig. 1. The Sugeno fuzzy model 

 

The weighted average method is the most 

repeatedly used in fuzzy usages since it is one of the 

more effective methods in terms of calculations. 

Unfortunately it is generally limited to symmetrical 

output membership functions. The algebraic expression 

is as follows: 

Z* = 
∑          

∑     
 (2) 

where ∑ represents the algebraic sum while z is the 

centroid of each symmetric membership function. 

Linguistic variables used in fuzzy controller design are 

defined as follows: 

Rule 1: If glucose concentration is Low and glucose 

deviation rate is Low then insulin infusion rate is Low. 

Rule 2: If glucose concentration is Medium and 

glucose deviation rate is Medium then insulin infusion 

rate is Medium. 

Rule 3: If glucose concentration is High and glucose 

deviation rate is High then insulin infusion rate is 

High. 
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As shown in Fig. 1, the above three IF-THEN rules 

are combined together in the form of first-order Sugeno 

model. 

 

4. Particle Swarm Optimization 

PSO is a subset of inspired algorithms that model 

biological processes to optimize highly complex cost 

functions. PSO algorithm allows a population 

composed of numerous individuals to evolve under 

specified selection rules to a state that 

maximizes/minimizes the fitness function/cost 

function.  

The main advantages of PSO are as follows: 

1) Optimizes with continuous/ discrete parameters 

2) Does not require derivative information 

3) Does not get stuck into so called local optima 

In PSO, each candidate solution is called 

“Particle”. Each particle in the swarm represents a 

candidate solution to the optimization problem, and if 

the solution is made up of a set of variables, the particle 

can correspondingly be a vector of variables. In PSO, 

each particle is flown through the multidimensional 

search space, adjusting its position in search space 

according to their momentum and both individual and 

global memories. The particle therefore makes use of 

the best position encountered by itself and that of its 

neighbors to position itself toward an optimal solution. 

The fitness of each particle can be evaluated according 

to the objective function of optimization problem. At 

each iteration, the velocity of every particle will be 

calculated as follows: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))     i i id i gd iv t v t c r p x t c r p x t  (3) 

where t  is the current step number, the inertia 

weight,    and    are the acceleration constants,    and 

   are two random numbers in the range [0,1],       is 
the current position of the particle,     is the best one 

of the solutions this particle has reached,     is the best 

one of the solutions all the particles have reached. After 

calculating the velocity, the new position of every 

particle can be worked out 

)1()()1(  tvtxtx iii  (4) 

The PSO algorithm is repeated using equations of 

Eqs. (2) and (3) which are updated at each iteration, 

until the pre-specified number of generations G is 

reached. 

Although Standard PSO (SPSO) involves some 

important advances by providing high speed of 

convergence in specific problems, it does exhibit some 

shortages. It is found that SPSO has a poor ability to 

search at a fine grain because it lacks velocity control 

mechanism. Many approaches are attempted to 

improve the performance of SPSO by variable inertia 

weight. The inertia weight is critical for the 

performance of PSO, which balances global 

exploration and local exploitation abilities of the 

swarm. A big inertia weight facilitates exploration, but 

it makes the particle long time to converge. 

Conversely, a small inertia weight makes the particle 

fast converge, but it sometimes leads to local optimum. 

Hence several inertia weight adaptation algorithms 

have been proposed in the literatures [37]. One of the 

most well-known algorithms is the Linearly Decreasing 

Inertia Weight PSO (LDW-PSO). In LDW-PSO, the 

inertia weight is adapted linearly as follows [38]: 

).( minmax
max

max
min  




iter

titert
 (5) 

where         is the maximal number of iterations,   is 

the current number of iterations. So as iterations go,   

decreases linearly from      to     . 

 

5. The Proposed control method 

In order to design the optimal fuzzy-PI controller, at 

first fuzzy PD controller is introduced. Fig. 2 shows the 

controller including two inputs and one output. The two 

inputs of controller are the error e and the change rate 

of error  ̇, respectively and the output of controller is U 

[39]. In fact, the parameter e represents the difference 

between measured blood glucose level and its basal 

level and the parameter  ̇ represents return speed of 

blood glucose to its basal level. 

 

 

Fig. 2. Fuzzy-PD controller 

 

Based on fuzzy-PD controller above, we can create 

the optimal fuzzy-PI controller as: 

    ∫            ̇    

                         ∫    

(6) 

where α is the integral constant and K1 and K2 are 

weighting parameters for e and  ̇, respectively. 

Therefore, the fuzzy controller becomes a parameter 

varying PI controller, its tantamount proportional 

control and integral control components are αK2D, 

αK1P [39]. 

The main shortage of the optimal fuzzy-PI 

controller is the lack of systematic approaches to define 

fuzzy rules and fuzzy membership functions. As we 

know, most fuzzy rules are based on human knowledge 

and differ among persons despite the same system 

performance. Because of this, it is complex to assume 

that the given expert’s knowledge captured in the form 

of the fuzzy controller leads to optimal control. 

Therefore, the efficient approaches for tuning the 

membership function and control rules without a trial 
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and error method are significantly required. Because of 

this, the idea of employing LDW-PSO algorithm to 

achieve best robustness, smallest settling time and the 

minimum insulin dosage is represented. The parameters 

of the signal builder, the parameters of fuzzy-PI 

controller and the parameters of input and output 

membership functions are optimized simultaneously. 

 

Table 1. Optimal Parameters of Triangular Membership 

Functions 

input variables 
Membership 

functions 
interval 

 Low [65.54 135.6 148.4] 

Glucose 
Concentration 

Medium [161.8 175.9 230.4] 

 High [269 271.6 292] 

Glucose Low [5.525 7.774 12.39] 

Deviation Rate Medium [9.819 17.84 20.64] 

 High [17.83 31.99 34.17] 

parameters of Low [1.0991 0.9704 1.2233] 

crisp Medium [1.5787 1.1441 1.3791] 

Polynomial 

functions 
High [0.6737 2.0464 1.9973] 

   

 

Fig. 3. Fuzzy-PI controller 

 

First-order Sugeno model is used in the proposed 

optimal fuzzy-PI controller with two inputs and one 

output. Linguistic entrance variables are plasma 

glucose deviation G(t) (mg/dL) and its changes rate, i.e. 

dG/dt, and the only output variable is the exogenous 

insulin injection rate, U(t) [(μU/ml min -2 (mg/dl) -1 ]. 

This parameter is also considered as a control variable. 

Triangular membership functions, because of their 

simple application, are used in the design process. 

These membership functions are chosen with respect to 

fuzzy clustering of inputs and output.  Best locations of 

the left and right "feet" or base points of the triangle 

and also best location of the triangle peak are set by 

LDW-PSO. The membership functions forms of inputs 

are given in Fig. 4.  

 

5. Simulation and Result 

In order to simulate the proposed optimal fuzzy-PI 

controller, MATLAB software is applied. Utmost 

generally accessible glucose measurement instruments 

acting by measuring the blood glucose content of a 

 

 

Fig. 4. Input membership functions 

 

small finger-prick blood instance, a nettlesome 

procedure upon repeated application. Consequently, 

some diabetic persons gage blood sugar as rarely as 

once per day, or less. Although last progresses have led 

to semi-aggressive systems, for example, the 

GlucoWatch Biographer from Cygnus [40]. This 

instrument offers sampling rates up to one readership 

every 20 minutes, and can gage and save data 

constantly for up to 12 hours before new sensor pads 

are needed. Due to the existence limitations in 

measurement rate of blood glucose level we can't have 

continuous insulin infusion and the maximum injection 

rate according to existing technology is once every 

twenty minutes. What is not considered in [34, 41]. In 

this paper, the sampling period of 20 minutes is chosen 

and with the aid of applied parameters in [34, 41] the 

simulation has been done. With the difference that the 

initial level of glucose is considered much more severe 

than used values in [34, 41]. In addition, in order to 

evaluate the robust performance of controller against 

parametric uncertainties that exist in Bergman model, 

three sets of parameters have been used that relate to 

three different patients. Numerical values of the 

parameters are given in Table 2 [34]. 

 

Table 2. Parameters Values 

 Normal Patient 1 Patient 2 Patient 3 

   0.0317 0 0 0 

   0.0123 0.2 0.0072 0.0142 

   4.92      5.3      2.16      9.94      

  0.0039 0.005 0.0038 0.0046 

  0.2659 0.3 0.2465 0.2814 

  79.0353 78 77.5783 82.9370 

   70 70 70 70 

   7 7 7 7 

   291.2 290 270 250 

   364.8 50 55 60 
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The used parameters of LDW-PSO are also listed in 

Table 3. 

 

Table 3. The Used Parameters of LDW-PSO 

Popsize Size of the Swarm 50 

Npar 

Dimension of Problem 

(Number of Parameters 
to be Estimated) 

35 

Maxit 
Maximum Number Of 

Intrations 
100 

   Cognitive Parameter 1 

   Social Parameter 1 

C Construction Factor 1 
 

 

In order to obtain the best response the objective 

function is defined as the Least Mean Square (LMS). In 

[41] the initial state of plasma glucose concentration is 

considered 70 (mg/dl) for all three patients that seems 

irrational and also the initial conditions in [34] were 

considered 180, 200, and 220 (mg/dl) for patients 1, 2, 

and 3 respectively, while in our paper much more 

severe initial conditions of blood glucose level were 

selected, i.e. 290, 270, and 250 (mg/dl) for patients 1, 

2, and 3 respectively. The maximum insulin dosage 

rate in [34] were obtained 10, 4.4, and 2.8 [(μU/ml min 
-2 (mg/dl) -1 ] for patients 1, 2, and 3 respectively, while 

in our paper were selected 1.4, 1.3, and 1.2 [(μU/ml 

min -2 (mg/dl) -1 ] for patients 1, 2, and 3 respectively. 

It is noteworthy that if the simulations had been done 

with sampling rate of less than 20 minutes better 

responses will be achieved, this subject shows the 

superiority of our method in optimization of insulin 

infusion rate than proposed method in [34]. Blood 

glucose level in diabetic patients should never be less 

than 70 (mg/dL) while according to Figure (3) in [34] 

the basal value of blood glucose level is considered 60  

(mg/dL) and in interval 50 (min) until 250 (min) is 

even less than 60 (mg/dL). In relation with linguistic 

rules, 3 linguistic rules are used whereas in comparison 

with [41] less IF-THEN rules are used. It means that 

the optimal fuzzy-PI controller is less complicated than 

the proposed controller in [41]. In order to evaluate 

performance of optimal fuzzy-PI controller in terms of 

settling time, the parameter TM (Time Margin) is 

introduced. TM parameter is the amount of time (min) 

that it takes the blood glucose level to reach the normal 

limits of 70-110. In [34] the amount of parameter TM 

for patients 1,2 and 3 are obtained approximately 60,50 

and 40 (min) respectively, however, by applying 

proposed optimal fuzzy-PI controller these parameters 

are 40,45 and 20 (min) for patients 1,2 and 3 

respectively. 

Figure 5 shows the difference between glucose 

profile of a healthy person and glucose profiles of three 

patients; figure 6 shows the obtained glucose profiles 

of 3 patients using the proposed fuzzy-PI controller and 

figures 7, 8 and 9 show exogenous insulin infusion 

rates for patients 1, 2 and 3 respectively. 

 

 
Fig. 5. Comparison between a healthy person and glucose 

profiles of three patients 

 

 
Fig. 6. Glucose profiles of 3 patients using the proposed 

controller 

 

 
Fig. 7. Exogenous Insulin Infusion Rate of Patient 1 
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Fig. 8. Exogenous Insulin Infusion Rate of Patient 2 

 
Fig. 9. Exogenous Insulin Infusion Rate of Patient 3 

 

7. Conclusion 
The main goal of this paper is to design an optimal 

fuzzy-PI controller base on first-order Sugeno model 

for blood glucose in diabetic patient. In the core of the 

proposed controller, a heuristic algorithm, namely 

Particle Swarm Optimization with Linearly Decreasing 

Weight (LDW-PSO), is utilized to optimize the 

membership functions, PI controller and insulin 

infusion signal simultaneously. To evaluate the 

performance of proposed controller, it is tested by three 

different sets of parameters that relate to three different 

patients. With regard to existing limitations in insulin 

injection rate the proposed controller has minimized the 

insulin injection rate. The simulation results depicted 

that the proposed controller has much better potential 

in terms of solution accuracy and better convergence 

speed in comparison with other methods despite of 

existent uncertainties in parameters of model. 
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