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Abstract 
This study examines the influence of fractional derivatives on the issue of concentrated flow injection from the walls into 

a non-concentrated magneto hydrodynamic flow within diverging channels. A main tangential velocity term is considered 

in the governing equations and other tangential velocity terms are ignored. In the governing nonlinear partial differential 

equations, the derivatives with respect to r, are replaced by fractional derivatives and transformed into a system of 

nonlinear ordinary differential equations with fractional derivatives using the similarity transformation method and then 

solved using semi-analytical and numerical methods. The findings show that increasing Re leads to a significant increase 

in the values of the velocity at the center of the channel, while a slight decrease is observed in the regions near the walls. 

Increasing Ha leads to a significant decrease in the maximum velocity. Also, the velocity vector lines at fixed radial 

positions become more uniform and two smaller maximum velocities are created near the channel walls. Increasing the 

Hartmann number leads to lower concentration throughout the channel, whereas higher Reynolds or Peclet numbers result 

in reduced concentration at the channel's center. Increasing the order of the fractional derivative of the concentration 

equation increases the concentration throughout the channel. 
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1.  Introduction 

The processes of injection and suction significantly 

influence flow characteristics, which encompass 

boundary layer behavior, flow separation, stability 

management, drag reduction, and the transfer of heat 

and mass. Suction is recognized as a crucial element in 

preserving the stability of the boundary layer. In 

contrast, injection can facilitate the acceleration of 

instability growth. Both techniques prove effective in 

minimizing flow separation and reducing drag. 

Injection can also serve to elevate temperature, while 

simultaneously functioning as a thermal insulator by 

establishing an insulating layer along the walls. In fluid 

mechanics, fractional derivatives are employed as a 

potent instrument for analyzing magnetohydrodynamic 

flows and associated chemical reactions. This 

instrument is crucial for investigating phenomena 

including free convection, the influence of thermal 

radiation, the dynamics of porous media modeling, 

nonlocal and memory effects in turbulence, boundary 

layer phenomena, and nanoscale heat transfer, which 

enhances prediction accuracy [1]. 

Mass diffusion can diverge from the conventional 

Fickian laws due to nanoscale interactions, a 

phenomenon known as anomalous diffusion, which 

manifests as underdiffusion at a reduced rate or 

superdiffusion at an increased rate compared to 

classical diffusion. The fractional derivative method is 

more effective approach for modeling anomalous 

diffusion [2]. Jeffrey and Hamel were pioneers in 

analytically solving the flow within convergent-

divergent channels [3, 4]. The Jeffrey-Hamel flow is 

utilized to examine flow instabilities, mass transfer 

phenomena, and the effects of injection.  

This study aims to employ the fractional derivative to 

explore the influence of a magnetic field and a variable 

velocity concentrated flow injection from the channel 

walls on the velocity and concentration distribution 

within a divergent channel. 

  

2. Governing relations 

The divergent channel features an opening angle of  
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0 / 7rad   and a radius ranging from r 1  to r 4 . 

The primary flow enters radially without any 

concentration, while the secondary flow, which is 

concentrated, is introduced from the walls of the 

channel. The momentum equation for the 

incompressible fluid, along with the concentration 

equation, is articulated as follows [5, 6]: 
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In this context,   represents the density, V denotes the 

velocity vector, P signifies the pressure, g indicates the 

gravitational acceleration vector,   refers to the stress 

tensor, J  is the electric current density, B  represents 

the magnetic field, C stands for the concentration, D is 

the mass diffusion coefficient, and S denotes the mass 

production or decay, where S 0 . The primary 

assumptions are outlined as follows: 

1. The fluid under consideration is a Newtonian fluid 

that is incompressible, with a flow that is two-

dimensional and steady; the influence of gravity is 

considered negligible, and the electric field is assumed 

to be absent. 

2. The radial velocity is prioritized over the angular 

velocity, leading to the inclusion of a dominant term for 

the angular velocity in the momentum equations, while 

other terms are disregarded. It is acknowledged that the 

tangential velocity varies across the channel, although 

prior research has typically assumed that the derivative 

of this velocity along the y or   axis is zero. 

By utilizing the aforementioned assumptions and 

removing the pressure, we substitute the first-order 

derivative concerning r with the Caputo fractional 

derivative of order   (
0 rD ) in the momentum 

equation. Similarly, we replace the first-order 

derivative with respect to r in the concentration 

equation with the Caputo fractional derivative of order 

  (
0 rD ). Furthermore, we employ the following 

dimensionless similarity transformations: 
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In this context,   represents the dimensionless angular 

position, while F and G denote the dimensionless 

functions associated with the momentum equation and 

the concentration equation, respectively. Additionally, 

  signifies the flow function, and we apply the Caputo 

fractional derivative relation of the power function [7]: 
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By utilizing the dimensionless parameters of Reynolds 

number, Hartmann number, Schmidt number and 

Peclet number, defined as 

5
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following final relations are derived: 
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The boundary conditions are expressed as follows: 
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To make the concentration dimensionless, the 

concentration at the initial point of the channel walls is 

used as a reference value: 
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3. Resolving Systems of Equations  

The adaptive fraction technique is employed to address 

systems of ordinary differential equations. Initially, the 

linear component of the differential equation is 

resolved, followed by substituting the variables with 

polynomial fractional functions [1, 8]. Numerical 

solutions are obtained using Matlab software.  

 

4. Validation of the solution method 

The presence of correlation and consistency between 

the numerical and analytical solutions substantiates the 

credibility of the current analytical approach. 

Conversely, Rahmati and Mollaei [9] conducted a 

numerical analysis of liquid metal flow within a 

microchannel featuring a rectangular cross-section 
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subjected to a magnetic field, as illustrated in Figure 1, 

which depicts the velocity distribution along the walls 

aligned with the magnetic field direction. An increase 

in the Hartmann number results in the emergence of an 

M-shaped velocity distribution within the channel. The 

rise in the Hartmann number in this study, akin to the 

findings in [9, 10], leads to the formation of an M-

shaped velocity profile, characterized by the presence 

of two peak velocities near the channel walls. This 

observation further validates the analytical method 

employed in this study.  

 

 

Figure 1. Velocity changes across the channel width in 

terms of Ha, Rahmati and Mollaei study [9] 
 

5. Results 

Figure 2 illustrates that an increase in the Reynolds 

number results in a notable reduction in the 

dimensionless concentration at the channel's center, 

accompanied by a minor rise near the walls. As the 

Reynolds number increases, there is a concurrent 

enhancement in both the primary non-concentrated 

flow and the secondary concentrated flow emanating 

from the walls. The primary non-concentrated flow 

contributes to a decrease in concentration, whereas the 

secondary concentrated flow leads to an increase. 

Consequently, with a rise in the Reynolds number, one 

would anticipate a slight elevation in concentration near 

the walls, where the injection effect is more 

pronounced. Conversely, at the center of the channel, 

where the tangential velocity is at its lowest and the 

primary flow prevails, there is a significant decrease in 

concentration. 

 

 

Figure 2. Variations of the dimensionless 

concentration G in terms of the parameter Re under 

the condition Ha 2,Sc 1.5, 1, 1       

According to Figure 3, increasing the Hartmann 

number leads to a slight decrease in the dimensionless 

concentration across the channel. 

 

 

Figure 3. Variations of the dimensionless 

concentration G in terms of the parameter Ha under 

the condition Re 16,Sc 1.5, 1, 1       

As illustrated in Figure 4, an increase in   results in 

a rise in the dimensionless concentration throughout the 

channel. 

 

 

Figure 4. Changes in the G function in terms of the 

Pe parameter and   under the condition 

Re 16,Ha 2, 1, 1       
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6. Conclusions 

The primary outcomes of this research are summarized 

as follows: 

• A notable increase in the Reynolds number results in 

a significant reduction of concentration at the center of 

the channel; conversely, a minor rise in concentration 

is noted in areas adjacent to the walls. 

• An elevation in the Hartmann number corresponds to 

a reduction in concentration across the entire channel. 

• An increase in the order of the fractional derivative of 

the concentration equation leads to a rise in 

concentration throughout the channel. 
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