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Abstract 
This paper studies the nonlinear oscillations of a beam with simply supported boundary conditions to which a bi-stable 

NES (nonlinear energy sink) is locally attached.. Bi-stable NESs are used because they are more efficient than the mono-

stable ones. The dimensionless the equations of motion of the system are derived, and by using Galerkin’s method the 

equations of motion are discretized. Then, the method of multiple scales (MMS) is employed to find the 3:1 primary 

internal resonance has been investigated. The corresponding results show that the frequency responses are highly affected 

by slight changes in the NES parameters. 
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1.  Introduction 

Vibration mitigation of large-scaled structures has 

consistently attracted the attentions of researchers. 

Vibrations can sometimes threaten the safety of 

structures or cause collapse and destruction by 

imposing stresses exceeding the safety factor. Bridges 

are one of the well-known large structures under 

various loads, some of which are periodic, like 

aerodynamic forces induced by surrounding air stream 

during storms. In this context, conducting an analysis is 

advantageous due to its potential for saving time and 

energy. Since such structures use energy dissipation 

methods such as NES to reach this aim, the focus of this 

paper is decided to be on analyzing the behavior of 

bridges with local bi-stable NES for the first time. A bi-

stable NES takes the advantage of bi-stable springs to 

increase the performance of NES. An exhaustive 

literature review of the above mentioned introduction 

written in the main manuscript can be found in the 

references section [1-29]. 

 

2. Methodology 

This section provides an overview of the paper’s 

methodology. First, the governing equations of motion 

and their dimensionless forms for a bridge model (a 

simply supported continuous Euler beam as in Fig. 1) 

are derived. The dimensionless equations are presented 

in Eq. 1 as follows: 

 

𝜂𝜏𝜏 + 𝜂𝜉𝜉𝜉𝜉 = 𝐹1
+ 𝐹𝑁𝐸𝑆𝛿𝑑(𝜉 − 𝜉𝑁𝐸𝑆) 

𝛼1𝜃𝜏𝜏 − 𝛼2𝜃 + 𝛼3𝜃
3 = −𝐹𝑁𝐸𝑆 

𝐹𝑁𝐸𝑆 = −𝛽1(𝜃 − 𝜂(𝜉𝑁𝐸𝑆 , 𝜏)) +

𝛽2(𝜃 − 𝜂(𝜉𝑁𝐸𝑆 , 𝜏))
3
+ 𝛽3(𝜃𝜏 −

𝜂𝜏(𝜉𝑁𝐸𝑆 , 𝜏))  

(1) 

 

Eq. 1 is discretized using the Galerkin method with the 

following mode shapes: 

 

 
𝜙𝑛(𝜉) = 𝑠𝑖𝑛(𝑛𝜋𝜉)

𝑛 ∈ 𝑁
 (2) 

 

To analyse the internal resonance case: 𝛺 ≃ 𝜔1 and 

𝜔2 ≃ 3𝜔1, the MMS is applied on the single-mode 

discretized equation of motion of the beam together 

with the equation of motion of the bi-stable NES. 

Studying this physical case of resonance emanates from 

the fact that the most vibration mitigation occurs 

whenever the NES absorbs the most possible energy of 

the system.  

After rescaling the coefficients of Eq. 1 and applying a 

two-term solution to it, one can find the steady-state 

solution of Eq. 1 standing for the nonlinear frequency 

response of the system as follows: 
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2 = 1  

(3) 
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The detail of parameters of derivations are discussed in 

the main manuscript. 

 

3. Discussion and results  

In this study, MMS is used to study the internal 

resonance of the bridge and the attached bi-stable NES. 

However, it is insufficient on its own. Thus, a numerical 

Runge-Kutta method is applied to Eq. 1 to find the 

numerical frequency response of the bridge. The result, 

illustrated in section 4 shows that both numerical and 

MMS frequency response curves conform well to each 

other, as can be seen in Fig. 2. Therefore, the remaining 

results are also validated. A key finding of this paper is 

that the beam (bridge) has a hardening and the NES has 

a softening behavior. This, implies that the NES 

designers should find an applicable optimum set of 

NES parameters to maximize the energy transfer under 

realistic constraints. An example is shown in Fig. 3 of 

the next section. 

 

4. Tables and Figures 

As mentioned in the previous sections, Figs. 1-3 are 

illustrated below. 

 

 
Figure 1. a bridge modeled as an Euler beam 

with bi-stable local NES 
 

 
Figure 2. verifying the MMS frequency response 

of the beam with the Runge-kutta numerical 

method 
 

 

 
(a) 

 
(b) 

Figure 3. the beam and the NES frequency 

responses, respectively shown in section (a) and 

(b) 
 

 

5. System of Units 

The entire formulation in this paper is 

dimensionless. Thus, one can extend the results to any 

system of units. 

 

6. Conclusions 

In this research, a large-scaled bridge-like structure is 

modeled as a simply supported continuous beam with a 

local bi-stable NES attached at a specific distance from 

the origin. The equations of motion of the coupled 

beam-NES system are derived using Newton’s second 

law of motion and these equations are then rendered 

dimensionless and discretized Galerkin’s method and 

comparing mode shapes of the beam. Taking the 

method of multiple scales into account, the modulation 

equation (frequency response) of the system is derived 

for the primary 3:1 internal resonance case and 

validated by the one obtained by a Runge-Kutta 

method. Finally, the effects of the NES dimensionless 

parameters on the beam’s frequency response are 

extensively studied and discussed. 
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