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Abstract  
In this study, the vibrations of a folded plate made of auxetic cells were examined. Initially, the elastic constants and 

density of the auxetic plate were determined based on the geometrical and material parameters of unit cell. The folded 

plate was considered as two jointed rectangular plates. Utilizing the first-order shear deformation theory and applying 

Hamilton's principle, the equations of motion governing each plate and the boundary conditions at the plate's edges were 

derived. Next, employing the combined Levy-differential quadrature method, the transformed equations of motion from 

the partial type to ordinary one has been solved. Assembling the equations of motion with boundary and continuity 

relations leads to an eigenvalue problem that its solution can present the frequency response function of folded plate. To 

validate the results obtained from the Levy-differential quadrature solution, the auxetic plate was simulated by a finite 

element analysis software, and the comparison results demonstrated the accuracy of presented method. Finally, the effects 

of plate's geometrical parameters on the natural frequencies of the folded plate were investigated. 
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1.  Introduction 

 In recent years, the use of auxetic materials has 

received attention due to their strength-to-weight 

ratio and high energy absorption. In 1987, Lakes 

developed foams with negative Poisson's ratio that 

exist in nature or can be manufactured [i]. In another 

study, the vibration of a folded plate of functionally 

graded composite material reinforced with graphene 

was investigated by numerical solution of differential 

quadrature method [ii]. Also, in another research, the 

dynamic behavior of flat and folded plates in a 

thermal environment was investigated using the 

theory of non-polynomial shear deformation [iii]. 
The theory of high-order shear deformation of the 

plate was used to analyze the transient dynamics of 

folded composite plates under different loading [iv]. 

The free vibration of a plate with three distinct parts, 

where one part is connected at two edges 

perpendicular to the other two parts, was studied by 

Zhang et al [v]. According to a review of research 

literature and the application of auxetic structures in 

various industries, the vibration analysis of plates 

consisting of folded auxetic cells can be very 

important, which has not been studied so far. Also, 

the use of the combined differential quadrature 

method, which is faster, more accurate and easier to 

use than the numerical methods used, is one of the 

other innovations of the present study. In this 

research, the equations of motion and boundary 

conditions of a plate consisting of folded auxetic cells 

are obtained by using the first-order shear 

deformation theory and using Hamilton's principle. 

Using the Levy-difference-of-squares method (Levy-

DQM), the governing differential equations are 

solved and the results are compared with Abaqus 

software. 

 

2. The geometry of the folded auxetic plate 

Figure 1 shows a schematic of an auxetic unit cell. 
 

 
Figure 1. Schematic of the auxetic unit cell 

 

Auxetic folded plate is shown in figure 2. 
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Figure 2. A schematic of a folded plate consisting 

of auxetic cells 

 

3. Governing dynamic equations 

Using the first-order shear deformation theory 

(FSDT), the displacement-strain and stress-strain 

field relations are expressed as relations (1). 

(1) 

[

𝜖𝑥𝑘𝑥𝑘

𝜖𝑦𝑘𝑦𝑘

𝛾𝑥𝑘𝑦𝑘
 
]

=

[
 
 
 
 
 

𝜕𝑢𝑘
𝜕𝑥𝑘

⁄

𝜕𝑣𝑘
𝜕𝑦𝑘

⁄

𝜕𝑢𝑘
𝜕𝑦𝑘

⁄ +
𝜕𝑣𝑘

𝜕𝑥𝑘
⁄ ]

 
 
 
 
 

+ 𝑧

[
 
 
 
 
 

𝜕𝜃𝑥𝑘
𝜕𝑥𝑘

⁄

𝜕𝜃𝑦𝑘

𝜕𝑦𝑘
⁄

𝜕𝜃𝑥𝑘
𝜕𝑦𝑘

⁄ +
𝜕𝜃𝑦𝑘

𝜕𝑥𝑘
⁄

]
 
 
 
 
 

, 

[
𝛾𝑥𝑘𝑧𝑘

𝛾𝑦𝑘𝑧𝑘
] = [

𝜃𝑥𝑘 +
𝜕𝑤𝑘

𝜕𝑥𝑘
⁄

𝜃𝑦𝑘 +
𝜕𝑤𝑘

𝜕𝑦𝑘
⁄

] , 

[

𝜎𝑥𝑘𝑥𝑘

𝜎𝑦𝑘𝑦𝑘

𝜎𝑥𝑘𝑦𝑘
 
] = [

𝑄𝑘11 𝑄𝑘12 0
𝑄𝑘21 𝑄𝑘22 0
0 0 𝑄𝑘33

] [

𝜖𝑥𝑘𝑥𝑘

𝜖𝑦𝑘𝑦𝑘

𝜖𝑥𝑘𝑦𝑘

], 

[
𝜎𝑥𝑘𝑧𝑘

𝜎𝑦𝑘𝑧𝑘
] = [

𝑄𝑘44 0
0 𝑄𝑘55

] [
𝜖𝑥𝑘𝑧𝑘

𝜖𝑦𝑘𝑧𝑘
] , 

k=1, 2. 

Where (𝑢𝑘 ،𝑣𝑘 ،𝑤𝑘،𝜃𝑥& 𝜃𝑦) represent the 

components of displacement and rotation field in 

FSDT. The coefficients of the stiffness matrix for the 

auxetic structures are calculated according to the FSDT 

according to equation (2). 

(2) 

𝑄𝑘11 =
𝐸1

1 − 𝜇12𝜇21
, 

𝑄𝑘12 =
𝜇12𝐸2

1 − 𝜇12𝜇21
, 𝑄𝑘22 =

𝐸2

1 − 𝜇12𝜇21
 , 

𝑄𝑘33 = 𝐺12, 𝑄𝑘44 = 𝐺23, 𝑄𝑘55 = 𝐺13 

Using Hamilton's principle, it is calculated according 

to the equations governing the plate and the boundary 

conditions at the edges. 

 

(3) 𝛿 ∫ (𝑈𝑘 − 𝑇𝑘)
𝑡

0

𝑑𝑡 = 0     

 

Five dynamic governing equations are obtained for 

each part of the folded plate according to relations (4). 

 
𝜕𝑁𝑥𝑘𝑥𝑘

𝜕𝑥
+ 

𝜕𝑁𝑥𝑘𝑦𝑘

𝜕𝑦
= 𝐽𝑘1

𝜕2𝑢𝑘

𝜕𝑡2
+ 𝐽𝑘2

𝜕2𝜃𝑥𝑘

𝜕𝑡2
 , 

𝜕𝑁𝑦𝑘𝑦𝑘

𝜕𝑦
+ 

𝜕𝑁𝑥𝑘𝑦𝑘

𝜕𝑥
= 𝐽𝑘1

𝜕2𝑣𝑘

𝜕𝑡2
+ 𝐽𝑘2

𝜕2𝜃𝑦𝑘

𝜕𝑡2
 , 

𝜕𝑀𝑥𝑘𝑥𝑘

𝜕𝑥
+

𝜕𝑀𝑥𝑘𝑦𝑘

𝜕𝑦
− 𝑄𝑥𝑘

= 𝐽𝑘2
𝜕2𝑢𝑘

𝜕𝑡2 + 𝐽𝑘3
𝜕2𝜃𝑥𝑘

𝜕𝑡2  , (4) 

𝜕𝑀𝑦𝑘𝑦𝑘

𝜕𝑦
+

𝜕𝑀𝑥𝑘𝑦𝑘

𝜕𝑥
− 𝑄𝑦𝑘

= 𝐽𝑘2

𝜕2𝑣𝑘

𝜕𝑡2
+ 𝐽𝑘3

𝜕2𝜃𝑦𝑘

𝜕𝑡2
 , 

𝜕𝑄𝑥𝑘

𝜕𝑥
 +

𝜕𝑄𝑦𝑘

𝜕𝑦
= 𝐽𝑘1

𝜕2𝑤𝑘

𝜕𝑡2
, 

 

The boundary conditions at the edges of the plate are 

according to the following relations. 

Boundary conditions of the simple support at the 

edges along the 𝑥𝑘axis 

 

(5)  𝑢𝑘 = 𝑣𝑘 = 𝑤𝑘 = 𝜃𝑥𝑘 = 𝑀𝑦𝑘𝑦𝑘
= 0 

 

clamped boundary conditions at the edges along the 

axis of  𝑦𝑘 

 

(6) 𝑢𝑘 = 𝑣𝑘 = 𝑤𝑘 = 𝜃𝑥𝑘 = 𝜃𝑦𝑘 = 0 

 

Boundary conditions of the simple support at the 

edges along the 𝑦𝑘axis 

 

(7) 𝑢𝑘 = 𝑣𝑘 = 𝑤𝑘 = 𝑀𝑥𝑘𝑥𝑘
= 𝜃𝑦𝑘

= 0 

 

Free boundary conditions at the edges along the 𝑦𝑘 

axis 

 

(8) 𝑁𝑥𝑘𝑥𝑘
= 𝑁𝑥𝑘𝑦𝑘

= 𝑀𝑥𝑘𝑥𝑘
= 𝑀𝑥𝑘𝑦𝑘

= 𝑄𝑥𝑘
 

At the connection boundary between two plates, 

there are continuity conditions of displacement, 

torsion, force and moment. The boundary conditions at 

the edge of the connection of two plates can be 

considered as relation (9). 

Continuity of displacements and rotations: 

(9) 

𝑢1(𝐿1, 𝑦) = −𝑢2(0, 𝑦)
× cos𝛽 − 𝑤2(0, 𝑦)
× sin 𝛽 

𝑣1(𝐿1, 𝑦) = 𝑣2(0, 𝑦) 

𝑤1(𝐿1, 𝑦) = 𝑢2(0, 𝑦)
× sin 𝛽 − 𝑤2(0, 𝑦)
× cos𝛽 

𝜃𝑥1(𝐿1, 𝑦) = 𝜃𝑥2(0, 𝑦) 
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𝜃𝑦1(𝐿1, 𝑦) = 𝜃𝑦2(0, 𝑦) 

 

Continuity of forces and momentums: 

 

(10) 

−𝑁𝑥1𝑥1
(𝐿1, 𝑦) × cos 𝛽 + 𝑄𝑥1

(𝐿1, 𝑦)

× sin 𝛽
= 𝑁𝑥2𝑥2

(0, 𝑦) 

𝑁𝑥1𝑦1
(𝐿1, 𝑦) = 𝑁𝑥2𝑦1

(0, 𝑦) 

−𝑁𝑥1𝑥1
(𝐿1, 𝑦) × sin 𝛽 − 𝑄𝑥1

(𝐿1, 𝑦)

× cos𝛽 = 𝑄𝑥2
(0, 𝑦) 

𝑀𝑥1𝑥1
(𝐿1, 𝑦) = 𝑀𝑥2𝑥2

(0, 𝑦) 

𝑀𝑥1𝑦1
(𝐿1, 𝑦) = 𝑀𝑥2𝑦2

(0, 𝑦) 

 

The differential quadrature method is used to solve 

the resulting equations. 

 

4. Discussion and results 

The geometrical parameters of the folded plate 

consisting of auxetic cells as well as the boundary 

conditions can be effective in the vibration frequency 

response. 

Table 1 shows the effect of changing the boundary 

conditions on the natural frequency. 

 
Table 1. The first four natural frequencies (Hz) 

of the auxetic folded plate through different 

boundary conditions 

F-Ss-Ss-F-Ss-

Ss 

Ss-Ss-Ss-Ss-Ss-

Ss   (N, M) 

1.226 5.950 (1,1) 

4.814 14.485 (1,2) 

14.349 18.819 (1,3) 

21.115 31.769 (1,4) 

 

The first four natural frequencies of the auxetic 

folded plate for different ϕ angles are shown in Figure 

3. 

 

 

 

Figure 3. Four first natural frequencies for different 

levels 

 

In Figure 4, the effect of changes in the plate 

thickness (H) on the vibrations of the auxetic folded 

plate is investigated. 
 

 

Figure 4. The first four natural frequencies for 

different plate thicknesses 

 

The first four natural frequencies for different t 

are shown in Figure 5.  

 

 

Figure 5. Four first natural frequencies for 

different t 

 
 

5. Conclusions 

In the present study, the vibrations of the folded plate 

consisting of auxetic cells were investigated using the 

Levy-differential quadrature method. The results of 

the solution were compared with the results of the 

finite element analysis, which shows the acceptable 

accuracy of the present Levy- differential quadrature 

method. Some results are as follows: 

1.  As the plate width increases and the rest of 

the parameters remain constant, the natural 

frequency decreases. 

2. By reducing the angle β from 180 to the 

smaller and the plate changes from a flat 

state to a folded sheet, the natural 

frequencies increase very quickly and then 
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remain constant. 

3.  As the plate thickness increases, the natural 

frequencies increase. 

4. As the K ratio increases, the natural 

frequencies decrease in the first two modes 

and increase and then decrease in the third 

and fourth modes. 

5. The effect of increasing the thickness of the 

beams constituent the auxetic cell on the 

natural frequency is almost negligible. 
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