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Abstract 
This research mainly presents the in-plane and out-of-plane vibration analysis of composite beams with arbitrary lay-ups 

using isogeometric method. In this study, the first-order shear deformation theory and NURBS basis functions are used 

to obtain the free vibration response of the structure. The material couplings, i.e., bending-stretching, bending-twisting, 

and stretching-twisting couplings, and the effects of shear deformation, rotary inertia and Poisson’s effect are considered. 

The obtained results using the isogeometric approach show excellent agreement with the results available in the open 

literature. The convergence study has been done using three different refinement schemes such as h-, p-, and k-refinement. 

It is observed that p-refinement has a faster convergence than h-refinement. Additionally, k-refinement is more suitable 

than p-refinement due to the lower number of degrees of freedom. It can also be concluded that using isogeometric 

analysis, the frequencies converged rapidly compared to the finite element method. Finally, the effects of various 

parameters on in-plane bending, out-of-plane bending, axial, and torsional vibration modes are investigated. 
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1.  Introduction 

Composite structures are increasingly vital in 

engineering due to their advantageous properties such 

as high strength, low weight, and corrosion 

resistance. Understanding their dynamic 

characteristics is essential for practical applications. 

These structures are typically analyzed using 

analytical, semi-analytical, or numerical methods. 

Among recent advancements, the IsoGeometric 

Analysis (IGA) has emerged to address the 

limitations of traditional approaches. 

Numerous studies have explored the behavior of 

composite beams using various methods. Analytical 

methods, such as those by Krishnaswamy et al. [1] 

and Friedman & Abramovich [2], have focused on 

vibrational and buckling characteristics, often 

incorporating effects like transverse shear 

deformation and rotary inertia. Other researchers, 

including Jafari-Talookolaei [3]  and  Aydogdu [4], 

extended these analyses to rotating beams and 

thermal buckling using first-order shear deformation 

theory and semi-analytical methods. 

Some studies have used the finite element method, as 

seen in the work of Chandrashekhara and Bangera 

[5], but out-of-plane vibrations in laminated 

composite beams with arbitrary layering have 

received less attention. Yıldırım and Kıral [6] and 

Çalım [7] have partially addressed this gap, while 

Jafari-Talookolaei et al. [8] further highlighted the 

significant errors introduced by neglecting out-of-

plane displacements. 

The isogeometric method has been used in structural 

analysis to achieve higher accuracy, especially for 

complex geometries. Researchers like Lee and Park 

[9] and Nguyen et al. [10] have applied it to study 

Timoshenko beams and alleviated issues like shear 

locking through advanced refinement techniques. 

Despite these advances, limited attention has been 

given to the out-of-plane vibrations of laminated 

composite beams. 

This paper focuses on using the IGA to analyze the 

dynamic behavior of laminated composite beams, 

specifically examining out-of-plane vibrations in 

beams with arbitrary layups. 
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2. Mathematical modeling 

2.1. A brief introduction of B-spline and NURBS 

2.1.1. B-spline 

2.1.1.1. Knot vector 

B-splines are defined on knot vectorΞ. The knot vector 

is a sequence of non-descending and consecutive real 

numbers in the parameter space, as follows: 

(1) Ξ = {𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1} 

 

Here 𝜉𝑖 is the 𝑖th knot, 𝑝 is the polynomial order and 𝑛 is 

the number of basis functions. 

2.1.1.2. B-spline basis functions 

Given a knot vector, B-spline basis functions 𝑁𝑖,𝑝(𝜉) of 

order 𝑝 in the parameter space can be defined as follows: 

(2) 

𝑝 = 0:    

 𝑁𝑖,0(𝜉) = {
1 𝑖𝑓  𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑝 ≥ 1:  

𝑁𝑖,𝑝(𝜉)

=
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝑁𝑖,𝑝−1(𝜉)

+
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

where 𝑖 is the control point index. 

2.1.2. B-spline curve 

A piecewise B-spline polynomial curve is obtained by a 

linear combination of basic functions and control points, 

as presented below: 

(3) 𝐶(𝜉) = ∑ 𝑁𝑖,𝑝(𝜉)𝑃𝑖

𝑛

𝑖=1

 

where 𝑁𝑖,𝑝(𝜉) are B-spline basis functions defined on 

the knot vector, and 𝑃𝑖 ∈ 𝑅𝑑 are the control point 

coordinates. 

2.1.3. NURBS 

B-splines are suitable for modeling complex shapes but 

do not have the ability to accurately represent conic 

sections. That is why extended B-splines, called 

NURBS, are used for precise drawing of simple shapes 

such as circles and ellipses. B-splines are piecewise 

polynomial functions, whereas NURBS are piecewise 

rational polynomial functions. All the features that were 

mentioned for B-splines also apply to NURBS. 

 

2.1.3.1. NURBS functions 

NURBS basis functions are defined as follows: 

(4) 𝑅𝑖,𝑝(𝜉) =
𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑊(𝜉)
 

(5) 𝑊(𝜉) = ∑ 𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑛

𝑖=1

 

In the above equations, 𝑁𝑖,𝑝(𝜉) are B-spline basis 

functions of degree 𝑝, and 𝑤𝑖 are the weights of the 

NURBS. 

2.1.4. NURBS curve 

The NURBS curve, which is obtained by combining 

control points and NURBS basis functions, is expressed 

as follows: 

(6) 𝐶(𝜉) = ∑ 𝑅𝑖,𝑝(𝜉)𝑃𝑖

𝑛

𝑖=1

 

Here 𝑅𝑖,𝑝(𝜉) are NURBS basis functions and 𝑃𝑖 are 

control points. 

3. Isogeometric formulation 

In IGA, to approximate the displacement field, NURBS 

basis functions are used. In the present problem, each 

control point has six degrees of freedom, including the 

axial displacement𝑢𝑖, lateral and vertical deflections 𝑣𝑖 

and𝑤𝑖, and three independent rotations𝜃𝑖, 𝜑𝑖, and 𝜓𝑖, 

where 𝑖 = 1,2, … , 𝑛, in which 𝑛 is the total number of 

control points. Therefore, the displacement fields of the 

beam elements are expressed as follows: 

(7) 

𝑢𝑒 = ∑ 𝑅𝑖𝑢𝑖

𝑛

𝑖=1

 

𝑣𝑒 = ∑ 𝑅𝑖𝑣𝑖

𝑛

𝑖=1

 

𝑤𝑒 = ∑ 𝑅𝑖𝑤𝑖

𝑛

𝑖=1

 

𝜃𝑒 = ∑ 𝑅𝑖𝜃𝑖

𝑛

𝑖=1

 

𝜑𝑒 = ∑ 𝑅𝑖𝜑𝑖

𝑛

𝑖=1

 

𝜓𝑒 = ∑ 𝑅𝑖𝜓𝑖

𝑛

𝑖=1

 

 

In the above equation, 𝑅𝑖 are the non-zero NURBS basis 

functions, and 𝑛 is the number of non-zero basis 

functions on each element. Therefore, the degree of 

freedom vector for the beam element is expressed by Eq. 

(8): 

(8) 

{𝛿}

= {
𝑢1, 𝑣1, 𝑤1, 𝜑1, 𝜓1, 𝜃1, 𝑢2, 𝑣2, 𝑤2, 𝜑2, 𝜓2,

𝜃2, … , 𝑢𝑛, 𝑣𝑛, 𝑤𝑛, 𝜑𝑛, 𝜓𝑛, 𝜃𝑛
}

𝑇
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Therefore, the strain potential and kinetic energy terms 

of each element can be expressed as follows: 

(9) 
𝑈𝐵

(𝑒)
=

1

2
{𝛿}𝑇[𝐾𝑒]{𝛿} 

(10) 
𝑇𝐵

(𝑒)
=

1

2
{�̇�}

𝑇
[𝑀𝑒]{�̇�} 

in which [𝐾𝑒] and [𝑀𝑒] are the stiffness and mass 

matrices of the element. Finally, the equations 

governing the overall motion of the system in free 

vibrations are expressed as follows: 

(11) [𝑀]{Δ̈} + [𝐾]{Δ} = {0} 

 

Assuming {Δ} = {Δ0}𝑒 �̂�𝜔𝑡 and 𝜆 = 𝜔2, Eq. (11) is 

rewritten as follows: 

(12) ([𝐾] − 𝜆[𝑀]){Δ0} = {0} 

 

where 𝜔 is the natural frequency of the desired beam and 

{Δ0} is the corresponding mode shapes. 

4. Results and discussion 

Using the IGA, the vibration characteristics of a 

laminated composite beam with arbitrary layups are 

extracted. In all parts, the composite beam with a 

uniform rectangular cross-section with an aspect ratio of  

𝐿 ℎ⁄ = 15 and a unit width (𝑏 = 1) is considered, also 

all layers are made of graphite/epoxy with the following 

mechanical properties: 

(13) 

𝐸11 = 144.8 𝐺𝑃𝑎,     𝐸22 = 9.65 𝐺𝑃𝑎,   𝐺12

= 𝐺13 = 4.14 𝐺𝑃𝑎, 
𝐺23 = 3.45 𝐺𝑃𝑎,       𝜗12 = 0.33,             𝜌

= 1389.23 𝑘𝑔 𝑚3⁄  
 

4.1. Convergence study 

First, the convergence rate of the isogeometric solution 

using the ℎ, 𝑝 and 𝑘 refinement methods is calculated 

and compared with the results of the reference [8]. The 

composite beams with asymmetric layering 

[45 −45 45 −45⁄⁄⁄ ] and two different boundary 

conditions are considered. 

The open knot vector approach is used in all parts. The 

first five natural frequencies for the three refinement 

methods have been calculated. Increasing the number of 

elements, it is observed that in the IGA, the solutions 

converge faster compared to the finite element method. 

 

 

4.2. Laminated composite beam with different layups 

In this section, different layups and clamped–clamped 

boundary conditions have been studied. The first three 

natural frequencies for the in-plane, out-of-plane, 

torsional and axial vibrations have been presented. For 

example, in Table 1, the first three natural frequencies 

for out-of-plane bending vibrations are given. Three 

different layups namely cross ply, angle ply and 

unsymmetric have been considered. In the results 

obtained for symmetric lamina, it has been observed that 

by increasing the orientation of the fibers in angle-ply 

layups, the natural frequencies decrease. 

Table 1. Three first dimensionless natural 

frequencies for out-of-plane modes 

Unsymmetric Angle ply [𝜃/−𝜃]𝑠 Cross ply Mode 

No. [60/90]2 [0/45]2 𝜃 = 60 𝜃 = 45 [90]4 [0]4 

1.6449 4.3726 1.6578 2.0512 1.6294 5.0285 Ω1 

4.4265 10.9643 4.4767 5.5444 4.3621 11.4228 Ω2 

8.4207 19.3870 8.5453 10.5950 8.2449 18.9674 Ω3 

 

4.3. Effects of slenderness ratio, material anisotropy 

and effects of width to thickness ratio 

The influence of slenderness ratio (𝐿 ℎ⁄ ), material 

anisotropy (𝐸11 𝐸22⁄ ) and width to thickness ratio 

(𝑏 ℎ⁄ ) on the Dimensionless Fundamental Frequencies 

(DFF) of the beam for axial, in-plane bending, out-of-

plane bending and torsional vibrations and with 

different boundary conditions and lamination scheme 

[0° 45° 0° 45°] have been studied. For example, the 

influence of slenderness ratio on DFF of the beam for 

out-of-plane bending vibrations have been depicted in 

Fig. 1. It can be observed that the DFF in all directions 

decrease by increasing the slenderness ratio 

 
Figure 1. The influence of slenderness ratio (𝑳 𝒉⁄ ) on 

the DFF of the laminated beam. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30

o
u

t-
o

f-
p

la
n

e 
B

en
d

in
g

 D
F

F

L/h

C-F

S-S C-C



 Shakib, Sadripour, Jafari-Talookolaei 
 

5. Conclusions 

In order to find the free vibration response of the beam, 

the first order shear deformation theory has been used. 

The effect of transverse shear deformation, rotary 

inertia, as well as Poisson's effect and material couplings 

in axial, in-plane and out-of-plane displacements have 

been considered. In this way, all the vibration modes, 

i.e. in-plane, out-of-plane bending modes, axial and 

torsional modes of laminated composite beams with 

arbitrary layers have been obtained with the help of 

IGA. 
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