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Abstract 
In current study, nonlinear vibrations and stability analysis of piezoelectric nanoresonator (PENR) considering with the 

effects of non-classical controllers such as strain gradient (SGT), nonlocal (NLT) and Gurtin–Murdoch 

surface/interface (GMSIT) theories are presented in comparison with the classical theory (CT). PENR subjected to 

nonlinear electrostatic excitation with direct (DC) and alternative (AC) voltages and also visco-pasternak medium. 

For this work, Hamilton’s principle and Galerkin technique are used to obtain the governing equations and boundary 

conditions and also to solve the equation of motion. Complex averaging method combined with arc-length continuation 

is used to investigate nonlinear frequency response and stability analysis of PENR. The results show that ignoring small-

scale and surface/interface effects give inaccurate predictions of vibrational response of the PENR. 

 

Keywords: Piezoelectric nanoresonator; Nonlocal strain gradient theory; Gurtin–Murdoch surface/interface; Nonlinear 

frequency response; Complex averaging method, Arc-length continuation.  
 

1.  Introduction 

Nanotechnology is a branch of science that includes 

many fields of technology and science such as 

nanostructures, especially nano piezoelectric 

sensors/resonators, which are widely used in today's 

engineering and have significantly attracted the 

attention of researchers around the world due to their 

unique features and wide applications [1, 2]. On the 

other hand, due to the excessive use of nanosensor, 

especially piezoelectric nanosensor in vibration 

devices, mathematical modeling and analysis of their 

vibration behavior is necessary. For this purpose, non-

classical theories have been presented to investigate 

nonlinear vibrations and dynamic analysis of 

nanostructures [3-5]. 

Based on the theory of non-local elasticity, Najafi et al. 

have investigated the effects of different parameters in 

the analysis of free vibrations of piezoelectric 

nanobeam [6]. Also, in the study conducted by Arefi, it 

has been shown that the increase of the non-local 

parameter leads to the increase of rotations, in-plane 

displacements and transverse deflection of a nano-

piezoelectric shell with double curves [7]. Ebrahimi et 

al. have used the nonlocal strain gradient theory to 

investigate the vibration analysis of viscoelastic 

nanobeams [8]. Using the nonlocal strain gradient 

theory and the analytical method of multiple time 

scales, the nonlinear vibrations of the nonlocal Euler-

Bernoulli nanowire as a nanoelectromechanical 

structure have been investigated by Karamad et al. [9]. 

Also, according to the Gurtin–Murdoch 

surface/interface theory, nonlinear buckling-

postbuckling of piezoelectric nanostructures have been 

investigated by Fang et al [10]. Recently, Hashemi 

Kachapi et al. some important analytical methods on a 

small scale, such as Gurtin–Murdoch surface/interface 

energy theories, Eringen's non-local theory and non-

local strain gradient, as well as the combination of these 

different methods. have presented to investigate the 

effects of non-classical controllers on natural 

frequencies, nonlinear vibrations and stability analysis 

of multi-walled piezoelectric nanostructures under 

various excitations such as harmonic, visco-pasternak 

and nonlinear electrostatics [11-16]. 

It should be noted that a very limited number of studies 

simultaneously studied the effect of surface/interface 

energy and small-scale effects for nanostructures, 

especially piezoelectric nanostructures. By using non-

local effects and surface energy, buckling analysis of 

piezoelectric nanoshells under external voltages and 

compressive loads has been investigated by Sun et al 

[17]. Also, Kiani has studied the post-buckling 

analytical response of beam-like nanostructures by 

considering surface and non-local effects [18].  

In all the previous works that have been done by the 

authors, very few researches have been done in the 

analysis of vibrations and stability of piezoelectric 

nanostructures by simultaneously considering the 

effects of strain gradient, Gurtin–Murdoch 
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surface/interface and non-local effects. The current 

research is a continuation of the work done [13], but the 

subject of the study, especially the applied forces, is 

completely different from the previous work, and as a 

result, different results are obtained from the previous 

article, and unlike the previous work, the present 

nanostructure is simultaneously subjected to nonlinear 

electrostatic stimulation with direct (DC) and 

alternating (AC) voltages as well as Visco Pasternak 

medium.  

 

2. Mathematical formulation and Solution 

procedure 

A piezoelectric nanoresonator based on cylindrical 

nanoshell subjected to visco-pasternak medium and 

nonlinear electrostatic excitation is shown in Figure 1. All 

of the physical and geometrical properties of the 

mentioned nanostructures can be seen in reference 

Hashemi Kachapi et al. [12]. 

 

 
Figure 1. A piezoelectric nanoresonator subjected to 

nonlinear electrostatic excitation 
 

The governing equations of motion and corresponding 

boundary conditions of the piezoelectric shell are obtained 

by applying the following Hamilton principle: 

 

(1) ∫ (𝛿𝑇 − 𝛿𝜋 + 𝛿𝑤𝑣𝑓 + 𝛿𝑤𝑒)𝑑𝑡 = 0,
𝑡

0

 

 

For this purpose, the total strain energy of PENS 

considering the surface/interface effect can be presented 

as: 

(2) 𝜋 =
1

2
∫ ∫

{
 
 

 
 𝑁𝑥𝑥𝜀𝑥𝑥

0 +𝑁𝜃𝜃𝜀𝜃𝜃
0

+𝑁𝑥𝜃𝛾𝑥𝜃
0 +𝑀𝑥𝑥𝜅𝑥𝑥

+𝑀𝜃𝜃𝜅𝜃𝜃 +𝑀𝑥𝜃𝜅𝑥𝜃
+𝜂33�̅�𝑧𝑝

2 ℎ𝑝 }
 
 

 
 

2𝜋

0

𝐿

0

𝑅𝑑𝜃𝑑𝑥 

 

In Eq. (2), the forces (𝑁) and moment (𝑀) resultants are 

determined in [12-14]. The first variation of kinetic energy 

of the PENS can be written as: 

(3) 

𝛿 ∫ 𝑇𝑑𝑡
𝑡2

𝑡1

= −∫ ∬{𝐼 ((
𝜕2𝑢

𝜕𝑡2
)𝛿𝑢 + (

𝜕2𝑣

𝜕𝑡2
)𝛿𝑣

𝑡2

𝑡1

+ (
𝜕2𝑤

𝜕𝑡2
)𝛿𝑤)}𝑅𝑑𝜃𝑑𝑥𝑑𝑡 

where  

(4) 

𝐼 = ∫ 𝜌𝑁

ℎ𝑁

−ℎ𝑁

𝑑𝑧 + ∫ 𝜌𝑝

−ℎ𝑁

−ℎ𝑁−ℎ𝑝

𝑑𝑧 

+∫ 𝜌𝑝

ℎ𝑁+ℎ𝑝

ℎ𝑁

𝑑𝑧 + 𝜌𝑆,𝐼 

= 2𝜌𝑁ℎ𝑁 + 2𝜌𝑝ℎ𝑝 + 2𝜌
𝑆 + 2𝜌𝐼 

 

Also, and first variation of the work done by the 

viscoelastic foundation and nonlinear electrostatic 

excitation, respectively, can be written as [12-14]: 

(5) 𝛿𝑊𝑣𝑓 = −∫ ∫ ∫

(
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It is important to note that all relationships, coefficients 

and phrases for nonlocal strain gradient, surface/interface 

theories and nonlocal strain gradient surface/interface and 

small-scale stress-strain relationships and etc. can be seen 

in full detail in [12-14].  

By applying the Galerkin method, Hamilton’s principle, 

least-squares polynomial format of electrostatic force, 

using the displacement and shear deformation in the 

assumed mode method, applying non-dimensional strain 

and kinetic energies and also non-dimensional works and 

then substituting in the Lagrange-Euler equations, the 

dimensionless governing equations of motion and 

boundary conditions for PENS are obtained to the 

following equations: 

(7) 

[(𝐾)𝑢
𝑢 + (𝐾𝑏𝑐)𝑢

𝑢]{�̅�} + [(𝐾)𝑢
𝑣 + (𝐾𝑏𝑐)𝑢

𝑣 ]{�̅�}
+ [(𝐾)𝑢

𝑤 + (𝐾𝑏𝑐)𝑢
𝑤]{�̅�}

+ [(𝑁𝐿)𝑢
𝑤 + (𝑁𝐿𝑏𝑐)𝑢

𝑤]{�̅�2}

= [(𝑀)𝑢
𝑢]{�̈̅�} + �̅�𝑢𝑝

𝑏𝑐, 
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(8) 

[(𝐾)𝑣
𝑢 + (𝐾𝑏𝑐)𝑣

𝑢]{�̅�} + [(𝐾)𝑣
𝑣 + (𝐾𝑏𝑐)𝑣

𝑣]{𝑣}
+ [(𝐾)𝑣

𝑤 + (𝐾𝑏𝑐)𝑣
𝑤]{�̅�}

+ [(𝑁𝐿)𝑣
𝑤 + (𝑁𝐿𝑏𝑐)𝑣

𝑤]{�̅�2}
= [(𝑀)𝑣

𝑣]{�̈̅�} + �̅�𝑣𝑝
𝑏𝑐, 

(9) 

[(𝐾)𝑤
𝑢 ]{�̅�} + [(𝐾)𝑤

𝑣 ]{�̅�}

+ [(𝐾)𝑤
𝑤 + (𝐾𝑏𝑐)𝑤

𝑤 − (𝐾𝑣𝑝)𝑤
𝑤
− (𝐾𝑒2)𝑤

𝑤] {�̅�}

+ [(𝑁𝐿)𝑤
𝑢 + (𝑁𝐿𝑏𝑐)𝑤

𝑢 ]{�̅��̅�}
+ [(𝑁𝐿)𝑤

𝑣 + (𝑁𝐿𝑏𝑐)𝑤
𝑣 ]{�̅��̅�}

+ [(𝑁𝐿)𝑤2
𝑤 + (𝑁𝐿𝑏𝑐)𝑤2

𝑤 − (𝑁𝐿2𝑒)𝑤2
𝑤 ]{�̅�2}

+ [(𝑁𝐿)𝑤3
𝑤 + (𝑁𝐿𝑏𝑐)𝑤3

𝑤 − (𝑁𝐿3𝑒)𝑤3
𝑤 ]{�̅�3}

= ([(𝑀)𝑤
𝑤 + (𝑀𝑏𝑐)𝑤

𝑤]){�̈̅�} + ([(𝐶)𝑤
𝑤]

+ [(𝐶𝑏𝑐)𝑤
𝑤]){�̇̅�}) + �̅�𝑤𝑝 + �̅�𝑤𝑝

𝑏𝑐 − �̅�𝑤𝑒

− �̅�𝑒 {

((�̅�𝐴𝐶cos�̅�𝜏)
2 + 2�̅�𝐴𝐶�̅�𝐷𝐶cos�̅�𝜏) ×

(
�̅�4(𝑁𝐿𝑒)𝑤3

𝑤 + �̅�3(𝑁𝐿𝑒)𝑤2
𝑤

+�̅�2(𝐾𝑒)𝑤
𝑤 + �̅�1�̅�1

)
} 

 

All steps to obtain the governing equations and also all 

coefficients and phrases in equations (7)- (9) are defined 

in [12-14]. In order to study the nonlinear dynamics 

response, arc-length continuation and complex averaging 

approaches are presented [12-14, 19].  

Verification, comparison and convergence study is 

investigated with full details for PENS in [12-14]. In this 

section, pull-in instability analysis on dimensionless 

natural frequency and nonlinear dynamics response are 

presented. For this purpose, different boundary condition 

such as clamped edge (CC), simply supported edge (SS), 

clamped-simply supported edge (CS) and, clamped-free 

edge (CF) is presented. 

 

3. Results and discussions 

The surface and bulk material properties of Aluminum 

(Al) nanoshell and PZT piezoelectric layer, others 

physical and geometrical parameters of PENR and also 

two case of surface density are shown in Table 1 [12-14]. 
Table 1. Surface and bulk properties of Al and PZT-4 

and other material and geometrical parameters 

𝐸𝑁 
(𝐺𝑃𝑎) 

𝜐𝑁 𝜌𝑁 

(
𝑘𝑔

⁡𝑚3
)⁡ 

𝜆𝐼 
(𝑁 𝑚⁄ ) 

𝜇𝐼 
(𝑁 𝑚⁄ )  

𝜏0
𝐼  

(𝑁 𝑚⁄ ) 
𝜌𝐼 

(𝑘𝑔 𝑚2⁄ ) 

70 0.33 2700 3.786 1.95 0.9108 5.46 × 10−7 

𝐶11𝑝 

(𝐺𝑃𝑎)  

𝐶22𝑝 

(𝐺𝑃𝑎) 

𝐶12𝑝 

(𝐺𝑃𝑎)  

𝐶21𝑝 

(𝐺𝑃𝑎) 

𝐶66𝑝 

(𝐺𝑃𝑎) 

𝐸𝑝 

(𝐺𝑃𝑎)
 
 

139 139 77.8 77.8 30.5 95 

𝜐𝑝 𝜌𝑝 

(𝑘𝑔⁡𝑚−3)  

𝜂33𝑝 

(10−8 

𝐹 𝑚⁄ )  

𝜆𝑆(𝑁 𝑚⁄ ) 𝜇𝑆(𝑁 𝑚⁄ ) 𝜏0
𝑆 

(𝑁 𝑚⁄ ) 

0.3 7500 8.91 4.488 2.774 0.6048 

𝑒31𝑝 

(𝐶 𝑚2⁄ )  

𝑒32𝑝 

(𝐶 𝑚2⁄ ) 

⁡𝑒31𝑝
𝑆  

(𝐶 𝑚⁄ ) 

⁡𝑒32𝑝
𝑆  

(𝐶 𝑚⁄ ) 

𝜌𝑆(𝑘𝑔 𝑚2⁄ )  

−5.2 −5.2 −3 × 10−8 −3 × 10−8 5.61 × 10−6  

𝑅(𝑚) 𝐿 𝑅⁄   ⁡ℎ𝑁 𝑅⁄  ⁡ℎ𝑝 𝑅⁄   ⁡𝑏 𝑅⁄  
⁡𝐶𝑤 (

𝑁. 𝑆

𝑚
) 

1 × 10−9 10 0.01 0.005 0.1 1 × 10−3 

⁡𝐾𝑤(𝑁 𝑚3⁄ ) ⁡𝐾𝑝(𝑁 𝑚⁄ ) 𝑉𝑝(𝑉) 𝑉0 𝑉𝐷𝐶(𝑉) 𝑉𝐴𝐶(𝑉) 

9 × 1017 2.07 1 × 

10−5 

1 1.5 0.5 

𝜇(𝑚2) 𝜂(𝑚2)     

(1 × 10−10)2 (1 × 10−11)2     

Case 1 Case 2 

𝜌𝐼(𝑘𝑔 𝑚2⁄ ) 𝜌𝑆(𝑘𝑔 𝑚2⁄ ) 𝜌𝐼(𝑘𝑔 𝑚2⁄ ) 𝜌𝑆(𝑘𝑔 𝑚2⁄ ) 
5.46 × 10−7 5.61 × 10−6 5.46 × 10−8 5.61 × 10−7 

The main purpose of this section is to compare three 

nonclassical theories of NLT, SGT and GMSIT with 

classical theory CT. For this purpose, the effect of 

different geometrical parameters and material with and 

without strain gradient, nonlocal and surface/ interface 

effects will be analyzed on dimensionless natural 

frequency (DNF), stability analysis and nonlinear 

frequency response using arc-length continuation as 

numerical method for the PENR with specifications 

mentioned to Table 1.  

The comparison of three nonclassical theories of NLT, 

SGT and GMSIT with classical theory CT on nonlinear 

frequency response of SS and CC PENR with �̅�𝐷𝐶 = 1.7 

and �̅�𝐴𝐶 = 0.5 respectively are presented in Figures 2 and 

3. It can be seen from Figure 2 that considering the 

frequency analysis results and the rigidity of SS PENR 

with regard to the type of theory, the consideration of the 

S/I effects in the GMSIT cas2 (case1) theory leads to 

hardening (softening) the PENR, and by increasing 

(decreasing) the resonant frequency, it reduces the 

resonance amplitude of PENR. Also, instability (due to the 

amounts of voltages applied to it) does not occur in the 

system. In other theories (CT, NLT, and SGT), instability 

with saddle-node bifurcations and nonlinear hardening 

behavior occurs and it is clear that in the non-classic 

theories of NLT and SGT, the oscillation amplitude, the 

range of instability is greater than that of the classical one, 

and with increasing 𝜏̅ and �̅�, the amplitude of the 

oscillation and the range of instability increases, but the 

resonance frequency decreases. 

 

 
Figure 2 Comparison of nonclassical theories with 

classical theory on the nonlinear vibration and stability 

analysis of SS PENR 
 

Furthermore, from Figure 3, it can be seen that with 

increasing of dimensionless nonlocal parameter, the 

resonance amplitude decreases. These observations mean 

that the small scale effects in the nonlocal model make CC 

PENR more flexible. In most cases, CC boundary 

condition have results similar to the SS boundary 

condition. Only in the SGT theory, with increasing of 𝜏̅ 
and �̅�, the system in CC boundary condition exhibits a 

nonlinear softening instability behavior, while in the SS 
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boundary condition, PENR has a nonlinear hardening 

instability behavior. 

 

 
Figure 3. Comparison of nonclassical theories with 

classical theory on the nonlinear vibration and stability 

analysis of CC PENR 
 

4. Conclusions 

In current study, nonlocal, strain gradient and Gurtin–

Murdoch surface/interface theories are presented to 

investigate nonlinear vibration and stability analysis of 

piezoelectric nanoresonator subjected to nonlinear 

electrostatic excitation compared to classical theory. For 

this analysis, Hamilton’s principle, Galerkin technique 

and also Complex averaging method combined with arc-

length continuation are used to compare nonclassical 

theories with classical one for nonlinear frequency 

response and stability analysis of the PENR.  

The results indicated that the natural frequency of the 

classical theory is greater than the NLT and SGT theories, 

indicating a reduction in the rigidity of the system due to 

the consideration of these two theories. The NLT theory 

has a higher frequency than SGT theory due to its 

increased rigidity. Taking into account surface / interface 

effects and using surface / interface densities higher or 

lower can create more or less frequencies than classical 

ones. The consideration of the S/I effects in the GMSIT 

case2 (case1) theory leads to hardening (softening) the 

PENR, and by increasing (decreasing) the resonant 

frequency, it reduces the resonance amplitude of SS PENR 

and instability does not occur in this case. Also, in CT, 

NLT, and SGT, instability with saddle-node bifurcations 

and nonlinear hardening behavior occurs and it is clear 

that in the non-classic theories of NLT and SGT, the 

oscillation amplitude, the range of instability is greater 

than that of the classical one. 
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