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Abstract  
In this paper, the dynamics of a tiny spherical gas bubble surrounded by an incompressible liquid confined in a 

linearly-elastic vessel has been numerically investigated. To unbalance the bubble, the vessel is deformed which 

increases the pressure of the liquid and thereby forcing the bubble to radially deform. The liquid is assumed to be 

thixotropic obeying the Moore model as a good representation of both thixotropic and shear thinning behavior 

simultaneously. For small Thixotropy numbers, thixotropic effects dominate whereas for large Thixotropy numbers, 

shear-thinning dominates. After deriving the integro-differential equations governing the bubble dynamics in Moore 

liquid, they have been numerically solved using ODE23s solver in the MATLAB software. Based on the obtained 

numerical results, an increase in the Thixotropy number leads to a sharp growth in the bubble’s oscillations. By 

increasing the viscosity ratio of the Moore model or the elasticity of the vessel the amplitude of the bubble oscillations 

is diminished. To minimize the radial stress exerted on the vessel by the oscillating liquid, Thixotropy number should 

be as large as possible. In cases where this is not feasible, the surface tension of the liquid should be reduced using 

appropriate surfactants. 

 

Keywords: Gas Bubble Dynamics, Thixotropic Fluid, Thixotropy Number, Elasticity, Surface Tension, Radial Stress. 

 

1. Introduction 

Bubble dynamics has always been a topic of prime 

interest due mainly to its application in cavitating flows 

[1]. In recent years, however, interest in bubble 

dynamics has significantly increased when it has been 

discovered that tiny gas bubbles can be used as contrast 

agent in sonography and also for drug dlivery[2]. Due to 

its industrial and biomechanical applications, a variety 

of different scenarios (involving free and encapsulated 

bubbles) have been investigated in the past [3-5]. In the 

majority of cases, the bubble is not confined. In the 

present study, we are primarily interested in a situation 

in which a bubble is formed (e.g., by laser beam) in the 

middle of an elastic cavity and has reached an 

equilibrium radius controlled by the interfacial tension. 

In recent years, it has been shown that such a bubble can 

become unstable if the elastic vessel is slightly deformed 

[6, 7].  

In the above studies, the liquid surrounding the 

bubble was Newtonian. The question then arises as to 

what will happen if the liquid is non-Newtonian. In a 

recent work, Arefmanesh et al. [8] extended the analysis 

to shear-thinning fluids obeying the power-law model 

and reached to the conclusion that the effect of shear-

thinning is noticeable. In the present work, we further 

extend their work to thixotropic fluids. For ease of 

analysis we rely on the Moore rheological model to 

represent thixotropic liquids. Our approach is numerical. 

Our objective is to see what happens to the bubble when 

it becomes unstable due to the small deformation of the 

vessel. The effect of Moore model parameter are then 

investigated on the amplitude of the free oscillation 

generated this way. We are also primarily interested in 

figuring out ways by which the radial stress experienced 

by the vessel inner boundary can be minimized.   

 

2. Mathematical Formulation 

Figure 1 shows the flow geometry. The geometry 

comprises an elastic cavity that is initially filled with a 

viscous liquid. This figure shows a situation in which, 

at t > 0 a spherical gas/vapor bubble has been formed 

in the center of the cavity with radius, Rb(t) which is 
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determined by the gas/vapor pressure and the surface 

tension. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of configuration of a gaseous 

bubble (radius Rb(t)) at t > 0 surrounded by finite 

layer of a thixotropic liquid coated by a linear elastic 

solid (radius Rc(t)).  

Assuming that the liquid surrounding the bubble is 

incompressible, the bubble can be forced to expand or 

shrink by deforming the elastic vessel. By so-doing, the 

pressure transmitted to the liquid at its interface with the 

solid is simultaneously sensed by the bubble and it 

responds by changing its radius, Rb(t). A radial flow is 

also induced in the liquid in such a way that its volume 

is conserved at all times. Assuming that the solid vessel 

is a linearly elastic material, any change in its volume at 

t = 0 can unbalance the bubble because it increases the 

pressure of the liquid surrounding the bubble. The 

following expression is used for the rise in the liquid 

pressure when vessel volume is varied [7]: 

∀𝑐(𝑡) − ∀𝑐,0=
∀𝑐,0
𝐾𝑐

(𝑝𝑙,𝑐 − 𝑝𝑙,0) (1) 

 

Where Kc stands for the rigidity of the vessel. In this 

relationship subscript l referring to the liquid. Since the 

liquid is incompressible, the change in bubble volume 

is the same as the change in vessel volume. As such, 

the pressure rise in the liquid can be related to the 

bubble volume as a function of time [7]: 

 

𝑝𝑙,𝑐 − 𝑝𝑙,0 =
∀𝑏(𝑡) − ∀𝑏,0

∀𝑐,0
𝐾𝑐 (2) 

 

With subscript B denoting bubble respectively.   

Considering purely radial motion of the bubble, for 

the liquid, the radial velocity should satisfy the mass 

conservation equation in spherical coordinate. The 

radial velocity in the liquid can be related to the bubble 

radius as: 

𝑣𝑟(𝑟, 𝑡) =
𝑑𝑅

𝑑𝑡
(
𝑅

𝑟
)
2

 (3) 
 

 

Where bubble radius, Rb, has been replaced by R for 

simplicity. The liquid is assumed to obey the Moore 

thixotropic model as follows [9]: 

 

𝜂 = 𝜂∞(1 + 𝛼𝑆) (4) 

 

where η, α and S denote fluid’s apparent viscosity, 

viscosity-gap ratio, and structural parameter, 

respectively. The subscript ∞ refers to the case of S = 

0 where all microstructures are broken. For the case of 

S = 1 (i.e., when all microstructures are rebuilt) we use 

subscript zero for referring to the zero-shear viscosity 

as  0 1    . Evidently, 1   denotes the 

difference between these two limiting viscosities in the 

Moore model. The structural parameter is expressed as 

[9]: 

𝐷𝑆

𝐷𝑡
= 𝑎(1 − 𝑆) − 𝑏𝑆�̇� (5) 

With S(0) = 1 as initial condition due to the first order 

nature of Equation 5 respect to time (as a good 

representation of fully complete structures before 

starting the motion). D/Dt = ∂/∂t + V. ∇ shows material 

derivative. a and b are controlling parameters of the 

model denoting the rate of fully breakdown and fully 

rebuild of polymer chains respectively.   also 

represents fluid’s shear rate. Direct substitution of Eq. 

3 into radial momentum equation then integrating on 

the confined liquid subspace from bubble surface to the 

coating surface leads to following second order ODE 

governing the bubble’s radial oscillations: 

 

𝜌 [𝑅
𝑑2𝑅

𝑑𝑡2
+ 2(

𝑑𝑅

𝑑𝑡
)
2

] (1 −
𝑅

𝑅𝑐
) + 

𝜌

2
(
𝑑𝑅

𝑑𝑡
)
2

(
𝑅4

𝑅𝑐
4
− 1) = 

−4𝜂∞
𝑑𝑅

𝑑𝑡

𝑅2

𝑅𝑐
3
(1 + 𝛼𝑆)|

𝑅𝑐

− 𝑝𝑙,0 − 

𝐾𝑐
𝑅3 − 𝑅𝑏,0

3

𝑅𝑐,0
3 − 2

𝜎

𝑅
+ 𝑝𝑣 + 

𝑝0,𝑔 (
𝑅𝑏,0
𝑅

)
3𝛾

− 12𝜂∞
𝑑𝑅

𝑑𝑡
𝑅2∫(1 + 𝛼𝑆)

𝑑𝑟

𝑟4

𝑅𝑐

𝑅

 

 (6) 

 

As the liquid confined between the bubble and 

vessel is incompressible, time variation of vessel radius 

as a direct conclusion from radial deformation of the 

system could be expressed as: 

 

 

Bubble 

Surrounding Liquid 

Elastic Solid 

Rc(t) 

Rb(t) 

θ 

φ 
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𝑅𝑐(𝑡) = [𝑅𝑐,0
3 + (𝑅(𝑡)3 − 𝑅0

3)]
1
3 (7) 

 

That is worth to mention that equation reduces to 

the classic Rayleigh-Plesset equation [3] by simply 

setting α = 0. In this equation, σ, pv and p0,g denote 

surface tension, vapor pressure and initial gas pressure 

inside the bubble. The initial conditions are: 

0R(0) R ,R(0) 0  . To benefit from working with 

dimensionless numbers, we define: 

 

Re =
√𝜌0𝑝𝑙,0𝑅𝑏,0

𝜂∞
,𝑊𝑒 =

2𝜎

𝑅𝑏,0𝑝𝑙,0
, 

𝜉 =
𝐾𝑐
𝑝𝑙,0

, 𝑇𝑥 = 𝑏, 

𝛹 =
1

𝑎𝑅𝑏,0
√
𝑝𝑙,0
𝜌0

, 𝜁 =
𝑝𝑣
𝑝𝑙,0

, 𝐶𝑓 =
𝑝0,𝑔

𝑝𝑙,0
. 

(8) 

 

where Re, We, ξ, Tx, Ψ, ζ and Cf represent Reynolds 

number, Webber number, Elasticity number, 

Thixotropy number (also called Deborah number [9]), 

destruction number, vapor pressure number, and gas 

pressure number, respectively.  

  

3. Numerical Method 

The governing equations (Eqs. 5 and 6) subjected to 

the corresponding initial conditions are solved 

numerically using MATLAB ODE 23s solver after a 

suitable change of variable which transfers time-

dependent radial coordinate to a fixed coordinate as: 

 

𝑍(𝑟, 𝑡) =
𝑅𝑐,0
𝑅𝑏,0

(
𝑟 − 𝑅

𝑅𝑐 − 𝑟
) 

R(t) ≤ r ≤ R𝑐(𝑡) → 0 ≤ Z ≤ ∞ 

(9) 

 

The governing equations obtained based on this 

idea have been discretized using the finite difference 

(second order) scheme. That is worth to say that 

COMSOL Multiphysics has also been used for further 

comparison purpose and so good agreement was seen 

between both set of the solvers. 

 

4. Results and Discussion 

In this section we present a summary of the numerical 

results. As earlier mentioned, we are primarily 

interested on the parameters of the Moore model on the 

bubble dynamics. But, for completeness, we also 

investigate the effect of several other key parameters 

such as vessel elasticity. Figure 2 shows the effect of the 

Thixotropy number (Tx) on the bubble response, which 

is predicted to be oscillatory. As is seen in this figure, 

by increasing the Tx number, the amplitude of the free 

oscillations is increased. Since smaller Tx numbers refer 

to strongly-thixotropic fluids, one can conclude that 

thixotropic behavior of physiological fluid has a 

negative effect on bubble dynamics because a larger 

bubble can damage the inner wall of the vessel (to be 

shown shortly). This is not surprising because a large Tx 

means a smaller apparent viscosity so that momentum 

transfer between liquid’s layers is facilitated. 

 

 
Figure 2. Effect of the Thixotropy number on time 

response of the bubble’s oscillations obtained at: α = 2, ξ 

= 1000, ψ = 1, φ =1/7, Re = 50, We = 0.2, ζ =0.023, Cf = 

0.001 

 

Figure 3 shows the effect of the viscosity ratio of the 

Moore model (α) on the bubble response. As is seen in 

this figure, this ratio (which is zero for Newtonian 

fluids) has a retarding effect on the bubble, simply 

because it gives rise to a larger apparent viscosity. 

 

 
Figure 3. Effect of viscosity ratio of Moore model on 

time response of the bubble’s oscillations obtained at: Tx 

= 10, ξ = 1000, ψ = 1, φ =1/7, Re = 50, We = 0.2, ζ =0.023, 

Cf = 0.001 

 

Finally in Fig. 4 we have investigated the effect of 

the Thixotropy number on the maximum radial stress 

applied from the liquid side on the inner layer of the 
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elastic vessel for different values of the gas/liquid 

surface tension. According to this figure, for any given 

Weber number, by increasing the Tx number the 

maximum stress is slightly increased until it reaches a 

peak beyond which it sharply decreases. This suggests 

that, in order to avoid the maximum stress applied on 

the vessel, the thixotropy number should be either 

smaller or larger than the critical Tx, with the latter 

being more appropriate although it means weakly 

thixotropic (but strongly shear-thinning type of the 

Moore model). Since in real world we do not have 

much control on the severity of thixotropic behavior in 

physiological fluids such as synovial fluid, we need a 

passive means to reduce the maximum stress. Based on 

Fig. 4, we can use appropriate surfactants for this 

purpose. That is to say that, by reducing the surface 

tension, the maximum stress is dramatically decreased. 

 

 
Figure 4. Effect of Weber number on variations of 

elastic coating maximum radial stress with Thixotropy 

number  obtained at: α = 2, ξ = 1000, ψ = 1, φ =1/7, Re 

= 50, ζ =0.023, Cf = 0.001 

 

5. Conclusion 

In present study, we have numerically studied the 

effect of a fluid’s thixotropic behavior on the dynamics 

of a spherical gas bubble confined in a closed-ended 

flexible cavity made of a linearly-elastic material. The 

bubble is forced to become unstable through a sudden 

change in the volume of the vessel. This perturbation 

sharply increases the liquid’s pressure at liquid/solid 

interface which is then transmitted to the bubble and 

forces it to undergo free oscillations. Based on the 

obtained numerical results, the following conclusions 

can be made:  

 Thixotropic number amplifies the amplitude 

of bubble’s free oscillations. 

 An increase in the viscosity ratio of the 

Moore model has a retarding effect on the 

bubble’s oscillations. 

 To minimize the radial stress experienced by 

the vessel (which, in physiological systems, 

may give rise to tissue damage and/or 

bleeding) it is predicted that the Thixotropy 

number should be as large as possible, 

which tacitly means that the fluid should not 

be too thixotropic. In cases there is no 

control on the degree of a fluid’s thixotropy, 

it is predicted that we should decrease the 

surface tension at liquid/bubble interface 

using appropriate surfactants.   
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