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Abstract 
This paper aims to investigate the influence of bearing elastic properties on nonlinear dynamics of 
unbalanced rotors. Accounting to the influence of asymmetric magnetic pull, the governing 
equations of motion associated with the rotor are obtained using the nonlinear Euler-Bernoulli beam 
theory. Adopting the Galerkin projection method, the reduced equations of motion are extracted and 
then solved analytically through the method of multiple time scales for the cases of free vibrations 
and primary resonances. Aside from the numerical simulations, the present findings are compared 
and successfully validated by those published in the previous studies. Afterward, a detailed 
parametric study is conducted to assess the influences of asymmetric magnetic pull, nonlinear 
stiffnesses of the bearings and the eccentricity on nonlinear dynamics of the system. Results reveal 
that accounting for the influence of asymmetric magnetic pull decreases the natural frequencies of 
the system. In addition, it is observed that increasing the eccentricity increases the amplitudes of 
vibrations and also broadens the bi-stable resonance zone. 

Keywords: Nonlinear dynamics; Induction motors shaft; Asymmetric magnetic pull; Nonlinear 
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1. Introduction 

Nonlinear dynamical analysis of induction electric 
motors in order to shedding light on its working 
condition is of great interest nowadays. So, it is 
very important to model the system as close as 
possible to the real conditions in which it operates. 
Here the pioneering literatures devoted to 
modelling dynamical behavior of rotating shafts 
are reviewed. 

Neglecting the effect of shaft’s mid-plane 
stretching, Hosseini and Khadem [1] analytically 

analyzed nonlinear free vibrations of rotors. They 
showed that in real rotors, there is no practical 
stretching for the middle surface, and so the 

nonlinearity of the system in the whirling mode is 
due to the nonlinearity of the rotating shaft 

curvature and inertia. Lu and Wang [2] 
numerically investigated the nonlinear vibrations 
of rotors under electromagnetic excitation by 

ignoring gyroscopic effects and geometric 
nonlinearity. They discretized the governing 

equations of motion using Galerkin’s method and 
solved the resulting initial value problems by the 
Runge-Kutta procedure. Accounting for the effects 

of nonlinear curvature and inertia, Eftekhari et al. 
[3] studied the effect of stator magnetic field on the 

vibrations of induction motors shafts in presence 
of unbalance mass. It is worth mentioning that in 
all the above studies, the bearings were considered 

rigid. In order to investigate the effects of the 
elastic properties of the bearings, Phadatare and 

Pratiher [4] modeled bearings as springs with 
nonlinear stiffnesses and studied nonlinear 
vibrations of the rotor resting on such supports. 

However, the combined influences of nonlinear 
elastic bearings and stator magnetic pull on the 

nonlinear dynamical behavior of the system has 
not been studied yet. Therefore, the current work 
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focuses on the nonlinear analysis of such a system 
via a large deformable model. 

2. Mathematical formulation of the 
governing equations of motion 

2.1. Rotor-Bearing modeling 

Figure 1 illustrates a schematic of an elastic rotor 
as a beam of length L and mass M resting on elastic 
supports at its both ends. To obtain the governing 
equations of motion, a body-fixed coordinate 
system XYZ which is attached to the mid-surface 
of the rotor on its left hand side and rotates with it, 
is utilized. In addition, a local coordinate system 
ξηζ which is attached to the mid-surface of the 
shaft at a given cross-section so that the ξ-axis is 
always being perpendicular to that cross section, is 
also employed. The bearings are also modeled as a 
set of linear and non-linear springs along with 
viscus dampers.  
 

 
Figure 1. Schematic of a rotor resting on elastic 

supports. 

 
According to Figure 2, �� and O are the 

centers of the rotor and stator, respectively. As can 
be seen in Figure 2, these two centers do not 
coincide each other. The distance between the 
centers of the rotor and the stator is determined by 
the parameter e. 

 
Figure 2- Representation of rotor and stator centers 

in presence of the magnetic excitation 

 
As Figure 2 demonstrates, the mass center 

of the rotor (i.e. G) also does not coincide with its 
geometric center (i.e.��) and is defined by two 

components �� and��. In addition, the rotor cross-
section twist angle is determined by φ. Using 
Euler's zyx consecutive rotations, it is possible to 
relate the global and local reference frames to each 
other. That is the XYZ reference frame is firstly 
rotated around its Z axis by the angle ψ to obtain 
the ����� reference frame, then the �����  
reference frame is rotated around its ��axis by the 
angle θ to obtain the ������ reference frame, and 
finally the ������ reference frame is rotated 
around its �� axis by the angle φ to reach the local 
ξηζ reference frame. Using Eq. (1), the ���� 

rotation matrix transforms the local ξηζ reference 
frame to the global XYZ coordinate system [5]. 

 

(1)  

����

= �

���θ	 ������− ���� ������+ ����
���� −������+ ���� −������− ����
−�� ���� ����
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The displacements of a point on the cross 

section of the rotor along the X, Y and Z axes are 
expressed by the variables u(s, t), v(s, t) and w(s, 
t), respectively. The parameter s is the curvature 
length. Assuming the shaft mid-plane is 
inextensible and no shear deformation exists, the 
Euler angles ψ and θ can be expressed according 
to Eq. (2) in terms of the spatial derivative of the 
variables v and w [3]. 
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2.2. Electromagnetic force  

Due to the non-uniform distribution of the 
magnetic field in the space between the rotor and 
the stator, the electromagnetic force acts on the 
system as an external excitation according to Eq. 
(3) [3]. 
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Where the electromagnetic parameter �� is given 
by 
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2.3. Elastic properties of the bearings 

Since the bearings are modeled as springs and 
dampers in the present study, the spring and 
damper forces are given Eqs. (5) and (6), 
respectively. These forces are the same for both Y 
and Z directions:  
 

(5)  

  

������� = �
��� + ����

�

+��� + ����
�� �(�) 

+�
��� + ����

�

+��� + ����
�� �(� − �). 

 

(6)  
�������� = (� + ��)(�̇ + �̇)�(�) 

+(� + ��)(�̇ + �̇)�(� − �). 

 

2.4. Equations of motion 

According to Hamilton's principle, one can write: 
 

(7)  � ��	��
��
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Where L is the Lagrangian and ��� is the work 
done by the external damping and electromagnetic 
forces. Neglecting the influence of the gravity [3, 
6], Eq. (7) can be simplified to: 
 

(8) 

�� = 

� �
���� + ���� − �������� − ��������

+��∗ + ����
�

��

��

= 0 

 

where ��� is rotational kinetic energy, ���  is lateral 

kinetic energy, ������� is the strain energy, ������� 

is elastic potential energy stored in the bearings, �∗ 
is the constraint equation comes from the 

inextensibility condition and ��� is the work done 
by the external forces. By integrating Eq. (8) by 
parts and using the fundamental lemma of 

variational calculus, one can simply reach the 
governing equations of motion.  

3. The method of multiple time scales  

Herein, according to the Galerkin method, the 
variable v and w are discretized as: 

(9) �(�. �) = ��(�)�(�) 

(10) �(�. �) = ��(�)�(�) 
 
Substituting Eqs. (9) and (10) in to the 

lateral and transvers governing equations of 
motion, multiplying both sides of these two 

equations by �(�) and integrating the outcome 
over the whole region, the reduced nonlinear 
equations of motion will be obtained.  

The method of multiple time scales is one 
of the analytical methods that can solve nonlinear 

initial value problems by introducing time scale 

�� = ���. In view of the introduced time scales, 

the time derivatives take the forms of [7]: 

(11)  
�

��
= �� + ��� + ���� + ⋯ 

(12)  
��

���
= ��

� + 2����� + ⋯ 

 

Where �� =
�

���
	(� = 0, 1, 2, … ) and ε is the book 

keeping parameter. Expanding the generalized 

coordinates �� and �� in the form a power series 
with odd exponents with respect to the book 
keeping parameters, substituting them into the 
reduced equations of motion and collecting the 

terms with like powers of ε, the forward and 
backward frequencies can be obtained by 
vanishing the determinant of the coefficients of the 
resulting eigenvalue problem. 

Following the method of multiple times 
scales, mentioned above, for the case of primary 
resonance in which the excitation frequency leads 
to the resonance frequency of the system, the 
frequency response of the system can also be 

determined. 

 4. Result 

4.1 validation 

Table 1 provides the parameters utilized in 
validating the present findings. Figure 3 compares 
the frequency response of the present study with 
that reported in ref. [4].  
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Table1: Parameters utilized in Figure 
3  

Value  Parameter  

0.000625 �� 

N-s/m 0.05  � 

1m L   

 
According to Figure 3, it can be observed 

that the present results math exactly with those 
published in the literature. In addition, as is seen, 

the present system has a hardening behavior. 

4.2. Results and discussions 

Figure 4 presents the variation of the 
forward and backward frequencies versus the 
rotational speed of the rotor accounting for the 

influence of the electromagnetic parameter. As is 
seen, increasing the electromagnetic parameter 
decreases both the forward and backward 
frequencies of the system. 

 
Figure 3- Comparison between the present 

frequency response curves (markers) and those 
reported in ref. [4] (solid lines) for a system whose 

properties are given in Table 1. 

 
Figure 4- Campbell diagram of the present 

system accounting for the influence of 
electromagnetic pull.  

Figure 5 illustrates the frequency 
responses of the system under the combined 
influences of electromagnetic pull, nonlinear 
stiffness of the bearings, eccentricity and rotor 

inertia. As is seen, increasing the non-linear 
stiffness of the bearings or reducing the rotor 
inertia increases the hardening behavior of the 
system. Also, increasing the electromagnetic 
parameter or reducing the eccentricity constricts 
the bi-stable zone of the frequency response 
curve.  

5- Conclusion 

In the present study, the governing equations of 
motion of the system have been derived using 
Hamilton's principle and reduced through the 
Galerkin method. The reduced equations of motion 
have then been solved analytically using the 
method of multiple time scales. The present 
findings have been comparted and successfully 
validated by those available in the literature. A 
detailed parametric study was then performed to 
illustrate the combined effects of nonlinear bearing 

stiffnesses, magnetic pull and eccentricity on 
nonlinear dynamics of the system. 

 

Figure 5- Frequency response of the system under 
the combined influences of the non-linear bearing 
stiffness, magnetic pull, eccentricity and inertia. 
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