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Abstract  
As resonant micro/nanoresonators are very delicate devices with very small dimensions, therefore, any defects and faults 

caused by the process of manufacturing and laboratory implementation can lead to fundamental changes in their vibration 

behaviors. Therefore, the effects of the mentioned disadvantages should be considered as much as possible to obtain more 

accurate sensors with higher efficiency. In this study, a general model of a doubly clamped microbeam (nanotube) with 

asymmetric cross-section with external excitation is examined. Then, linear and non-linear behaviors of an ideal nanotube 

with circular cross section are investigated. The results of the simulations indicate good agreement with the experimental 

references available in the literature. Then, taking into account the asymmetry in the resonator cross-section, the system 

is moved away from an ideal model to a more real model, and the possible effects of the asymmetric cross-section in 

adjustment, reduction, and vanish of internal resonance are investigated and studied. Finally, the advantages and 

disadvantages caused by asymmetries and the optimal use of such an opportunity to obtain more innovative and complete 

models with higher efficiency are explained and detailed. 
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1. Introduction 

Recently, M/NEMS resonators have received a lot of 

attention due to low mass, nanometer size, frequency 

tunability, ultrahigh frequency, and high Q-factor. They 

are used to detect physical quantities such as 

temperature[1], molecular masses[2], and force in the 

zeptoNewton level[3]. Due to their small size and very low 

mass, nanoresonators easily exhibit nonlinear behavior. 

One of the interesting phenomena in the nonlinear region, 

which strongly affects the modal response of NEMZ 

resonators and leads to a change in their resonance 

frequencies and quality factor, is nonlinear modal 

coupling. Strong modal coupling or internal resonance 

(IR) happens in NEMS resonators when the ratio between 

resonance frequencies of the coupled modes is an integer 

n or a nearly integer. So far, internal resonance has been 

studied in various structures such as cantilevers[4], curved 

beams[5], membranes[6], and carbon nanotubes[7]. The 

first experimental implementation of internal resonance 

with a frequency ratio of 1:3 between bending and 

transverse modes was realized in a doubly clamped 

microbeam under electrostatic excitation, which was used 

as a mechanism for frequency stabilization[8]. Similarly, 

in another study, it was observed when the excitation force 

is off, the amplitude of bending vibrations remained 

constant for a finite period of time because of energy 

exchange between bending and torsional modes in the 

internal resonance conditions[9]. Therefore, nonlinear 

modal coupling, especially internal resonance, can be used 

as a useful platform for engineering scenarios and energy 

harvesting in nanoresonators. In the context of linear 

resonators, imperfections and/or geometric asymmetry 

caused by the fabrication process and laboratory 

implementation have always been discussed and studied, 

and researchers have always looked for solutions to 

optimally exploit such challenges[10,11]. The mode 

coupling induced by geometric asymmetry in 

microcantilevers leads to enhance mass sensitivities and 

the imaging quality[12]. Recently, an extensive and up-to-

date review is published, including a categorization of 

micro/nanoresonators based on linear/nonlinear, 

single/array, symmetric/asymmetric, along with 

frequency shift-based and amplitude shift-based 

resonators[13]. 

However, defects and faults caused by the process of 

manufacturing and laboratory implementation in 

nonlinear nanoresonators under internal resonance 

condition have received less attention until now. 

In this study, first, a general model of a doubly 
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clamped microbeam (nanotube) with external excitation is 

considered. In this regard, first the equations of continuous 

system are converted to nonlinear reduced-order equations 

with two degrees of freedom through the Gelerkin method. 

Then the resulting nonlinear equations are solved using 

the Multiple Scales perturbation method for an ideal 

nanotube with circular cross section and its linear and non-

linear behaviors are investigated. 

Then, taking into account the asymmetry in the 

resonator cross-section, the system is moved away from 

an ideal model to a more real model, which can be 

modeled as an elliptical cross-section with two main 

inertial axes, and the possible effects of the asymmetric 

cross-section in adjustment, reduction, and vanish of 

internal resonance are investigated and studied. Finally, 

the advantages and disadvantages caused by asymmetries 

and the optimal use of such an opportunity to obtain more 

innovative and complete models with higher efficiency are 

explained and detailed. 

 

2. Problem formulation  
Transverse vibrations of a model of a doubly clamped 

microbeam (nanotube) with asymmetric cross-section with 

external excitation are governed by generalizing integral-

partial differential equation [14]: 
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where the nondimensional parameters as follows 
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By using the Gelerkin method, nonlinear reduced-order 

equations with two degrees of freedom are obtained as 

follows.  
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Equations (3) and (4) can be solved by using the 

Multiple Scales perturbation method. 

 

𝑇0 = 𝑡,         𝑇1 = 𝜀𝑡,          𝑇2 = 𝜀2𝑡            𝐷𝑛

=
𝜕

𝜕𝑇𝑛

 

𝑢1 = 𝜀𝑢11(𝑇0, 𝑇2) + 𝜀3𝑢13(𝑇0, 𝑇2) + ⋯ 

𝑢2 = 𝜀𝑢21(𝑇0, 𝑇2) + 𝜀3𝑢23(𝑇0, 𝑇2) + ⋯ 
 

(5) 

 

In an ideal nanoresonator with circular cross section, 

internal resonance (IR=1:1) is realized because 𝜔1 =
𝜔2 = 𝜔0. 

Under internal resonance condition, detuning 

parameters 𝜎1 and 𝜎2 are introduced as follows. 

  

𝐼𝑅 = 1: 1 →       𝜔2 ≅ 𝜔1 →        𝜔2

= 𝜔1 + 𝜀2𝜎1 

Ω ≅ 𝜔1 →        Ω = 𝜔1 + 𝜀2𝜎2 

(6) 

 

In case of symmetric resonator 𝜎1 = 0. 

Finally, modulation equations are obtained as follows. 
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For the steady-state response   

𝑎1́ = 𝑎2́ = 𝛾1́ = 𝛾2́ = 0 

𝛽1́ = 𝜎2,            𝛽2
́ = 𝜎2 − 𝜎1 

 

(11) 

 

Above equations can be solved numerically. 

Asymmetry in cross-section of a resonator can be 

modeled as an elliptical cross-section with radius ratio 
of 

𝑅2

𝑅1
 Figure 1.  
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Figure 1. Asymmetric resonator with elliptical cross-

section 

 

Increasing or decreasing in radius ratio (asymmetric 

parameter) can lead to changes in internal resonance 

condition. As shown in figures 2-4, A small asymmetry 

in the cross-sectional area can lead to significant 

changes in the linear and non-linear vibration behavior 

of this type of nano resonators. By deliberately creating 

and controlling the asymmetry in the cross section, the 

internal resonance performance and therefore the 

vibration response of the resonator can be controlled for 

the desired applications. The results show that for 

asymmetries 
𝑅2

𝑅1
≤ 0.93 and 

𝑅2

𝑅1
≥ 1.1, the internal 

resonance performance is removed and destroyed. 

Therefore, in cases where the internal resonance only 

results in the energy loss and low quality factor in the 

graphene resonators and carbon nanotubes, one can 

increase the asymmetry (for example by depositing the 

mass in the main inertia axes) and prevent the internal 

resonance and energy exchange between modes. 

 

 

 
Figure 2. a. planar frequency response of ideal 

resonator in two dimensions b. Non-planar 

frequency response of ideal resonator in two 

dimensions 

 

 
Figure 3. Non-planar frequency response in 

asymmetric resonator with 
𝑹𝟐

𝑹𝟏
= 𝟎. 𝟗𝟕 

 

 
Figure 4. Non-planar frequency response in 

asymmetric resonator with 
𝑹𝟐

𝑹𝟏
= 𝟏. 𝟎𝟑 

 

3. Conclusions 

In this study, attempts were made to achieve a richer 

insight for designing and optimizing the performance 

of micro/nano scale resonators by examining the linear 

and non-linear behaviors of a nanoresonator under 

internal resonance conditions by using saddle-node and 

pitchfork bifurcations.  

For example, internal resonance condition can be 

exploit to reduce the vibration amplitude in self-

oscillating nanoresonators. 

In addition, by intentionally creating asymmetry in the 

cross-section, the frequency region in which the 

internal resonance is activated can be changed 

according to the desired application. 

The results show that the following cases can be 

considered for optimal design of nanoresonators: 

 For enhancing the vibration amplitude of 

internal resonance, 𝑎2 ≥ 2 × 10−9, 0.96 ≤
𝑅2

𝑅1
≤ 1.06 

 For vanishing the vibration amplitude of 

internal resonance 
𝑅2

𝑅1
≤ 0.9 and 

𝑅2

𝑅1
≥ 1.15 
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