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Abstract  
The vibration of cylindrical shells with rigid disks attached to the edges is investigated and the results are compared with 

those obtained under the common simplifying assumption that the edges are fixed at the interface of the rigid disk and 

the cylindrical shell. The shell is modeled using Sanders-Koiter shell theory, including the transverse shear deformation. 

The effect of the rigid disk on the edge displacements is also determined in a systematic manner using the kinematic 

relations of the rigid disk. To solve the problem, the semi-analytical finite element method is used and the stiffness and 

mass matrices of the element attached to the disks are determined completely for the first time. The reason why the disk 

affects the stiffness matrix is that some constraints appear between the displacement components of the shell edges due 

to the rigidity of the disk. Several numerical studies are conducted to investigate the influence of the mass properties of 

the rigid disks on different shell natural frequencies and mode shapes. Results show that the rigid disk can significantly 

change the natural frequencies of the modes with zero and one circumferential wave number.  
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1. Introduction 

Cylindrical shells are one of the most common forms 

of structures used in many applications such as fuel 

containers, satellite and spacecraft, and launch 

vehicles. In most of these applications, the structure 

is under dynamic loads which require that the 

vibration characteristics of the shell is accurately 

determined during the design process.  

The common task used for vibration analysis of the 

shell is isolating a single cylinder and fix the edges 

with some appropriate Boundary Conditions (BCs) 

such as the simply-supported or clamped BCs. 

However, in most cases, this approach does not 

accurately represent the actual constraints since the 

shell is connected to other bodies. Hence, to obtain 

the most accurate results, it is required that the whole 

structure, consisting of all the bays connected to each 

other is modeled. This, however, make the model 

computationally intensive and thus slows down the 

simulation process. An alternative approach that can 

compromise between the accuracy and the 

computational efficiency is to model adjacent bays as 

rigid bodies with specific inertial properties. This 

way, the constraining effects of the adjacent structure 

and also their mass effects would be accounted for 

without increasing the computational complexity.  

Effects of the various edge constraints have been 

considered in many studies.  Zhou et al. [1] 

considered the effect of the elastic constraints on the 

vibration of cylindrical shells and Tang et al. [2] 

developed a model with more realistic BCs, by 

including the effect of the bolts at the ends of the 

cylindrical shell.  A kind of multi-segment cylindrical 

shells is also considered by Qu et al. [3] and Tang et 

al. [4], where each segment had different thickness.  

Regarding the effects of the attached rigid disk on the 

vibration of the cylindrical shell, the seminal work of 

Pellicano [5] can be mentioned, where both the 

theoretical and experimental studies are performed on 

the linear and nonlinear vibration of the cylindrical 

shell. The dynamic stability of the shell with the top 

mass was also considered by Pellicano and Avramov 

[6] and also by Pellicano [7], where again the 

experimental results were used to support their 

theoretical findings.  

In all the above studies, the main focus was on the 

effect of the attached mass on the dynamics of the 

system and no numerical results are presented to 

indicate how much the common method of assuming 

fixed BCs at the connection with other bodies 

decreases the accuracy of the predicted frequencies, 

compared to the result obtained by accounting for the 
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effect of inertial properties of connected bodies. 

Moreover, the methods of solution used in most of 

these studies were based on the Ritz-method with 

some appropriate approximating functions and the 

other powerful methods like the common hybrid 

finite-element method (FEM), used for the analysis 

of axisymmetric structures, has not been applied yet 

for the vibration analysis of cylindrical shells with the 

attached disk. Accordingly, in the present study, the 

free-vibration of cylindrical shell with attached 

masses at the ends is re-investigated by 

systematically deriving the governing equations of 

motion. For this purpose, the kinematic relations 

needed at the interface of the rigid disk and the 

cylinder are presented in-details, which would lead to 

some relations between the displacement components 

of the shell at the interface. These relations are the 

results of the rigidity of the disk that produces 

constraints between the shell’s displacement 

components. Moreover, the effect of the disk inertial 

properties are also taken into account by considering 

the kinetic energy of the disk in the formulation. The 

Sanders-Koiter shell theory, with the transverse shear 

deformation is employed for modeling the shell and 

the solution is provided by the semi-analytical finite 

element method. The shear locking phenomenon is 

also avoided by using the field consistency approach.  

The main contribution of the present study lies in the 

presented numerical results and discussion, which are 

focused on the changes in the lowest natural 

frequencies and mode shapes of the cylindrical shells 

that occur when the rigid-disk is used at the end of the 

cylinder, compared to the simplifying assumption of 

fixed BCs at the edges connected to adjacent bodies. 

Moreover, the hybrid analytical-FEM method is used 

for the first time in the present study for vibration 

analysis of cylindrical shells with the attached disks. 

It will also be shown that the application of this 

method for the present problem is not completely 

straight forward and needs to apply some specific 

modifications to the stiffness and mass matrices.  

 

2. Formulation 

The geometry of the problem considered in the 

present study is shown in Fig. 1.  According to this 

figure, the two coordinate systems, xyz and XYZ are 

used for describing the displacements of the shell and 

the disk, respectively. The xyz coordinate is the 

cylindrical coordinate with 𝑦 = 𝑅𝜃, and XYZ is the 

Cartesian coordinate, where its origin is located at the 

center of the disk in its interface with the cylinder. 

The displacement components of the disk are also 

denoted by  𝑈, 𝑉 and 𝑊, which are displacements in 

X, Y, and Z directions. The displacements of the shell 

are also denoted by 𝑢, 𝑣, and 𝑤, which are given with 

respect to the xyz coordinate system. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. The schematic of the cylindrical shell with 

the adopted coordinate systems (a) Side view (b) 

Front view (c) 3D view 

 

The shell displacement field in the z-direction is 

then defined according to the first-order shear 

deformation theory as: 

 

(1) 

𝑢 = 𝑢0(𝑥, 𝜃) + 𝑢1(𝑥, 𝜃)𝑧 

𝑣 = 𝑣0(𝑥, 𝜃) + 𝑣1(𝑥, 𝜃)𝑧 

𝑤 = 𝑤0(𝑥, 𝜃) 

 

Next the strain-displacement relationships based 

on the Sanders-Koiter shell theory [8], and the stress-

strain relationships obtained for linear elastic 

isotropic materials in the plane-stress state [8] are 

used to derive the kinetic and strain energies of the 

shell. The kinetic energy of the disk would also be 

obtained as: 

 

(2) 

𝑇𝑑 =
1

2
𝑚𝑑�̇�2 +

1

2
𝑚𝑑(�̇� + ℎ𝑔�̇�)2

+
1

2
𝑚𝑑(�̇� − ℎ𝑔�̇�)2

+
1

2
𝐽𝑋�̇�2 +

1

2
𝐽𝑌 +

1

2
𝐽𝑍�̇�2 

 

where , 𝜓, and 𝜑 are the infinitesimal Euler rotation 

angles about the X-, Y-, and Z-axis. Also 𝐽𝑋, 𝐽𝑌, and 𝐽𝑍 
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are mass moments of inertia of the disk and 𝑚𝑑 is the 

mass of the disk.  

In order to provide the solution, the displacement terms 

of the shell are taken as: 

 

(3) 

𝑢0 = �̃�𝑛(𝑥) cos(𝑛𝜃) 

𝑣0 = �̃�𝑛(𝑥) sin(𝑛𝜃)  
𝑤0 = �̃�𝑛(𝑥) cos(𝑛𝜃) 

𝑢1 = �̃�𝑢𝑛(𝑥) cos(𝑛𝜃)    
𝑣1 = �̃�𝑣𝑛(𝑥) sin(𝑛𝜃) 
𝑛 =  0, 1, 2, … 

 

where 𝑛 is the circumferential wave number. 

Moreover, the functions of 𝑥 in Eq. (1) are 

approximated using the Lagrangian shape functions 

corresponding to the three-node element [8]. To avoid 

the shear locking, according to the Field consistency 

approach, the function �̃�𝑢𝑛(𝑥) that appear in the 

transverse shear strain would be approximated using 

lower-order shape functions [8, 9]. It is to be noted that 

since the three-node element is used in the FEM, for 

the number of 𝑁𝑒  elements, there would be 2𝑁𝑒 + 1 

nodal values corresponding to each displacement terms 

in Eq. (3). Hence, considering all the five displacement 

terms, the total number of nodal values would be 

10𝑁𝑒+5. 

 Next, the displacement compatibility conditions are 

imposed at the interface of the shell edge and the disk. 

This would yield the following relation between the 

displacement terms of the shell and the disk at the 

interface: 

 

(4) 

𝑢0 = 𝑈 − 𝑅 sin 𝜃 𝜓 − 𝑅 cos 𝜃 𝜑 
𝑣0 = 𝑉 sin 𝜃 + 𝑊 cos 𝜃 + 𝜃𝑅 
𝑤0 = 𝑉 cos 𝜃 − 𝑊 sin 𝜃 

𝑢1 = − sin(𝜃) 𝜓 − cos(𝜃) 𝜑 

𝑣1 = −𝜃 
 

Substituting Eq. (3) into (4) and equating the 

coefficients of sin 𝜃, cos 𝜃, sin 𝑛𝜃, cos 𝑛𝜃 in both sides 

yield: 

 

(5) 
𝑈0 = 𝑈, �̃�0 = −𝑅𝜃, �̃�0 = 0, 

 �̃�𝑢0 = 0, �̃�𝑣0 = −𝜃, 

𝜓 = 𝜑 = 0, 𝑉 = 𝑊 = 0 

(6) 

𝑈1 = −𝜑𝑅, �̃�1 = −𝑉, �̃�1 = 𝑉, �̃�𝑢1 = −𝜑, 

�̃�𝑣1 = 0 

𝜓 = 𝜃 = 0, 𝑊 = 𝑈 = 0, 

(7) 
𝑈𝑛 = 0, �̃�𝑛 = 0, �̃�𝑛 = 0, �̃�𝑢𝑛 = 0, �̃�𝑣𝑛 =

0 (𝑛 > 1), 

𝜃 = 𝜓 = 𝜑 = 0, 𝑈 = 𝑉 = 𝑊 = 0 

 

where Eq. (5), (6) and (7) would affect the BCs for the 

modes with 𝑛 = 0, 𝑛 = 1, 𝑛 > 1 respectively. These 

BCs are then applied to the mass and stiffness matrices, 

changing some of the columns and rows corresponding 

to the element attached to the disk. 

 

 

3. Numerical results and discussions 

First, the model developed in the present study is 

verified by comparing with the result of the Abaqus for 

some natural frequencies and mode shapes. Then the 

mode shapes of the cylindrical shell with the attached 

mass on the right edge and the clamped left edge are 

plotted in Fig. 2 for some lower-frequency modes. Fig. 

2 (a) and (b) shows that the circumferential and axial 

displacements are dominant respectively in the first and 

second modes, corresponding to 𝑛 = 0, which implies 

that these modes are in fact the torsional and axial 

modes. For the first mode corresponding to 𝑛 = 1 (Fig. 

2(c)) the radial displacement is dominant, meaning that 

this mode is a beam-like mode of the shell, where the 

cylinder experiences both the bending and torsional 

deformations. In the second mode with 𝑛 = 1 (Fig. 

2(d)), the motion is again dominated by the axial 

deformation, with lower participation of the bending and 

torsional motions. 
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(c) 

 
(d) 

Figure 2. The first two mode shapes of the shell with 

the disk attached to right edge (a) First mode with 

𝒏 = 𝟎 (b) Second mode with 𝒏 = 𝟎, (c) First mode 

for 𝒏 = 𝟏, (d) Second mode for 𝒏 = 𝟏  

 
Next, a numerical study is performed in Fig. 3 on the 

variation of the two lowest frequencies corresponding 

to different values of 𝑛, for a cylinder with an attached 

mass to its right edge. The result obtained for the shell 

with both-ends clamped is also included in this figure. 

The figure shows that how the mass attached to edge 

can change the lowest fundamental frequency of the 

cylinder from the mode with 𝑛 = 8 to the mode with 

𝑛 = 1 or 𝑛 = 0. 

  

 
Figure 3. Variation of the first two frequencies with 𝒏 

obtained for three different disk masses 

 

4. Conclusions 

The hybrid analytical FEM is used to solve the free-

vibration problem of a cylindrical shell with rigid 

disks attached to the edges. Results showed that the 

lowest fundamental frequency of the shell can be 

drastically changed from a mode with higher 

circumferential wave number to a mode with one 

circumferential wave number (beam-like mode), 

when the inertial properties of the adjacent bodies are 

considered in the analysis of a cylindrical shell. 

Hence, using clamped BCs at the edges where the 

shell is attached to other parts can lead to unrealistic 

results. The mode shapes corresponding to the lowest 

frequencies are also considerably affected by the 

attached disk.   
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