
 

Journal of Solid and Fluid Mechanics (JSFM), 13(3): 1-4, 2023 

 

 

Journal of Solid and Fluid Mechanics 

(JSFM) 
 

DOI: 10.22044/JSFM.2023.12732.3701 

 

  

Guided wave modeling in a plate with infinite width using p-version of semi-

analytical finite element method  

Elyas Mirzaee Kakhki1, Jalil Rezaeepajhand2 

1Ph.D. Student, Mech. Eng., Ferdowsi Univ. of Mashhad, Mashhad, Iran 
2 Prof., Mech. Eng., Ferdowsi Univ. of Mashhad, Mashhad, Iran   

*Corresponding author: elyas.mirzaee@mail.um.ac.ir 

Received: 02/20/2023   Revised: 05/01/2023   Accepted: 07/31/2023  
 

Abstract  
Balancing accuracy and computational cost in modeling and analyzing engineering problems has always been a crucial 

concern. The same principle applies to the modeling of wave propagation in structures and deriving dispersion curves, 

which are critical in structural health monitoring and material property identification. The importance of maintaining this 

balance appears especially in cases where there is a need for repetition in modeling. In this study, we aimed to improve 

the accuracy and computational cost of the semi-analytical finite element method by incorporating hierarchical shape 

functions. The results indicate that using appropriate shape functions can enhance the performance of the semi-analytical 

finite element method for modeling wave propagation in structures. The study also investigated the impact of the number 

of degrees of freedom on the calculation of the cutoff frequency, the accuracy of the dispersion curves, and the increase 

in modeling error resulting from this factor. 
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1. Introduction 

The semi-analytical finite element method (SAFE) was 

introduced in 1973 by Alami [1] and Lagas [2] for 

modelling wave propagation in structures with arbitrary 

cross section. This method, which has been used by 

others in civil engineering [3], is closely related to the 

strip element method and the thin element method [4]. 

In this method, the cross section of the structure is 

discretized by elements and an analytical expression is 

considered in the direction of wave propagation. This 

method has been further developed over the years by 

other researchers to include structures with more 

complex geometries [5-7] and other materials [8, 9]. 

An additional factor that has been noticed is the use 

of different shape functions in the semi-analytical finite 

element method. The different methods used to 

discretize the cross section of the structure can be 

divided into one-dimensional (1D SAFE) and two-

dimensional (2D SAFE) semi-analytical methods. For 

structures with simple geometry, such as plates and 

cylindrical shells, the 1D SAFE method can be used to 

reduce the calculations. In this method, one-

dimensional three-noded elements with second-order 

shape functions and three degrees of freedom for 

displacement in each node have been commonly 

considered [10-15], while two-noded elements [16] and 

three nodes with two degrees of freedom in each node 

[6] have also been used by researchers. In the 2D SAFE 

method, triangular elements with three nodes and 

quadrilateral elements with four nodes are most 

commonly used [17-22]. In some cases, triangular 

elements with six nodes, quadrilateral elements with 

eight nodes [23-27], and rarely quadrilateral elements 

with nine nodes [25] have also been proposed by 

researchers. Despite numerous researches on the semi-

analytical finite element method using low-order shape 

functions, little research has been done on the use of 

high-order shape functions. 

According to the mentioned investigations, the 

innovation in this article lies in the combination of 

hierarchical shape functions based on the normalized 

integral of Legendre polynomials with the SAFE 

method and the presentation of the p-version of semi-

analytical finite element method. This article is 

organized as follows. In part 2, SAFE method 

formulation is presented. Hierarchical shape functions 

are studied in Section 3. The numerical modeling and 

discussion are presented in Section 4, and finally the 

conclusions are drawn in Section 5.  

 

2. Semi-analytical finite element method 

To use the 1D SAFE method to model wave 

propagation in a plate with infinite width or a pipe, at 

each node in a one-dimensional element, three degrees 

of freedom are considered and furthermore an 

analytical term 𝑒−𝑖(𝜔𝑡−𝑘𝑥) is considered. In the 

considered formulation, 𝑘 stands for the wave number, 

x for the direction of wave propagation, ω for the 
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angular frequency and t for the time. Using this method, 

the displacement relations in the element are presented 

as follows [6]: 

(1) 

𝒖(𝑒)(𝑥, 𝑧, 𝑡) = [

𝑢𝑥
(𝑒)

𝑢𝑦
(𝑒)

𝑢𝑧
(𝑒)

] = 𝑵(𝑧)𝒒(𝑒)𝑒−𝑖(𝜔𝑡−𝑘𝑥) 

In the above relation, 𝑵 represents the shape function 

and 𝒒(𝑒) represents the displacement vector of the nodes 

in each element. By calculating the kinetic energy, ϕ, 

and the potential energy, K, and placing them in the 

Hamiltonian relation, and after performing the relevant 

calculations, the equation of motion for an element can 

be derived [6]: 

(2) (𝒌1
(𝑒)

+ 𝑖𝜅𝒌2
(𝑒)

+ 𝜅2𝒌3
(𝑒)

− 𝜔2𝒎(𝒆)) 𝑸(𝑒) = 0 

And the relations of stiffness and mass matrices can be 

obtained as follows [6]: 

(3) 𝒌1
(𝑒)

= ∫ [𝛽1
𝑇𝑪(𝑒)𝛽1]𝑑Ω𝑒

 

Ω𝑒

 

 

(4) 𝒌2
(𝑒)

= ∫ [𝛽1
𝑇𝑪(𝑒)𝛽2 − 𝛽2

𝑇𝑪(𝑒)𝛽1]𝑑Ω𝑒

 

Ω𝑒

 

 

(5) 𝒌3
(𝑒)

= ∫ [𝛽2
𝑇𝑪(𝑒)𝛽2]𝑑Ω𝑒

 

Ω𝑒

 

 

(6) 𝒎 
(𝑒) = ∫ [𝑵𝑇𝜌(𝑒)𝑵]𝑑Ω𝑒

 

Ω𝑒

 

The relations of all elements can be assembled together 

to derive the overall relations.  

 

3. Hierarchical shape functions based on the 

normalized integral of Legendre 

polynomials: 

The main difference between hierarchical shape 

functions and other shape functions is that in 

hierarchical shape functions new points are added 

without moving existing points, and as the order 

increases, all lower order shape functions are present 

unchanged in the higher order shape function. 

Considering the natural coordinate system for the 

standard one-dimensional element, the basic 

hierarchical shape functions are as follows: 

(7) 
𝑁1(𝜉) =

1

2
(1 − 𝜉) 

 

(8) 
𝑁2(𝜉) =

1

2
(1 + 𝜉) 

And the inner shape functions which are composed of 

the normalized integrals of Legendre polynomials are 

as follows: 

(9) 
𝑁𝑛

𝐹𝐸𝑀,𝑝(𝜉)  =
1

‖𝑙𝑒𝑛−2‖
∫ 𝑙𝑒𝑛−2(𝑥1)

𝜉

𝑥1=−1

𝑑𝑥1, 

                                                               𝑛 = 3,4,5, … , 𝑝 

In the above relations, len-2 is a Legendre polynomial of 

order n-2. It is worth noting that, in this method, the 

degrees of freedom do not represent the displacement 

of real nodes [28].  

 

4. Results and Discussion 

To investigate the effects of using hierarchical shape 

functions on the accuracy and computational cost of the 

SAFE method, h-refinement and p-refinement 

approaches using high-order shape functions for one 

isotropic and one anisotropic plate were considered. To 

facilitate comparison of the results, the results were 

compared in the same degrees of freedom. The different 

methods considered here are as follows. 

   A- h-refinement approach using standard second-

order shape functions based on Lagrange polynomials 

with the same nodal distribution (FEM, h-refinement). 

   B- p-refinement approach using high order shape 

functions (p > 2). 

In the p-refinement approach, the following shape 

functions are investigated:  

Standard shape functions based on Lagrange 

polynomials with equal nodal distribution (FEM, p-

refinement), spectral shape functions based on 

Lagrange polynomials with Gauss-Lobatto-Legendre 

nodal distribution (SEM 1), and Gauss-Lobatto-

Chebyshev nodal distribution (SEM 2), and 

hierarchical shape functions based on the normalized 

integral of Legendre polynomials (p-FEM). 

  The percentage of discrepancy between the modeling 

performed and the results presented using analytical 

method is calculated using the following relation: 

 

(10) 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦

= |
𝜅𝐷𝐶 − 𝜅𝑆𝐴𝐹𝐸

𝜅𝐷𝐶
| × 100 

Where 𝜅𝐷𝐶the wavenumber is obtained from 

"Dispersion Curve Calculator" software and 𝜅𝑆𝐴𝐹𝐸 is 

the wavenumber obtained from the semi-analytical 

finite element method. 

 

4.1. Case I: Isotropic material 

As a first case, a steel plate with a thickness of one 

millimeter is considered. The mechanical properties of 

the plate considered in the modeling are listed in Table 

1. 

 
Table 1. Mechanical Properties of Steel plate 

ρ(kg/m3) ν G (GPA) 

7850 0.3 180 

 

The modeling assumes that the wave propagates along 

the x-axis, the z-axis is considered along the thickness 

of the plate, and the y-axis is considered along the width 

of the plate. It is also assumed that the width of the plate 

is infinite. For isotropic materials, shear waves 

involving displacement along the width of the plane can 

be separated from Lamb waves. Thus, if we wish to 

consider only Lamb waves, we can ignore the 

displacements in the y-direction at each node. 

  The convergence study using the different approaches 
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mentioned and different shape functions is shown in 

Figure 1. Only the first two modes are used here for 

comparison. 

The first point that can be clearly seen in Figure 1 is 

that the p-refinement approach with higher order shape 

functions shows much better performance than the h-

refinement approach. The next important point is that 

hierarchical shape functions perform better than 

spectral shape functions. The better performance of this 

method can be verified from two points of view. 

 
a 

 
b 

Figure 1. Percentage of discrepancy vs. the 

number of nodes for an steel plate a) 1st and 

mode b) 2nd mode 

 

First, we note that the use of higher order hierarchical 

shape functions has higher accuracy than other shape 

functions with the same number of degrees of freedom. 

This means that when considering the specific level of 

accuracy using high order shape functions, the desired 

result can be achieved with a lower number of degrees 

of freedom. Moreover, after converging to a certain 

value, good stability in the results is observed.  

 

4.2. Case II: Anisotropic material 

In this case, a 6 layer composite plate with stacking 

sequence of [±𝟔𝟎, 𝟎]𝐬 is considered. The properties of 

the considered single layer are presented in Table 2. 

In this case, the same approach is used for isotropic 

plates. Figure 2 shows the percentage of discrepancy 

versus the number of nodes in the layer obtained by the 

presented methods. As can be seen, the results resemble 

the case of isotropic material. However, the 

performance of the different shape functions of the 

methods used appears to be almost the same. This is 

mainly due to the increase in degrees of freedom caused 

by the number of layers.  

 

5. Conclusions 

In this article, the effect of using hierarchical shape 

functions in the SAFE method, as well as its 

performance has been studied. The simulation results 

presented here show that the high-order shape functions 

commonly used in the spectral finite element method 

and the p-version of finite element method exhibit very 

good performance in improving the efficiency and 

reducing the computational cost of this method. 

Moreover, according to the research and comparison 

between high-order shape functions, it can be stated 

that among the considered methods, hierarchical shape 

functions are more accurate considering the same 

number of degrees of freedom.  

 

 
a 

 
b 

 
c 

Figure 2. Percentage of discrepancy vs. the 

number of nodes in each layer for composite 

plate with stacking sequence of [±𝟔𝟎, 𝟎]𝐬 a) 1st 

mode, b) 2nd mode and c) 3rd mode 

 

 

 

Table 2. Mechanical properties of a single layer AS4/3502 

ρ (kg/m3) ν23 ν13 G23(GPa) G13(GPa) G12(GPa) E3(GPa) E2(GPa) E1(GPa) 

1578 0.3 0.3 3.75 3.75 5.97 11.3 11.3 127.6 
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