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Abstract 
In this research, the influence of hygro-thermo-magnetic fields on the dynamics of axially moving functionally graded 

beams is investigated by considering various porosity models. Also, parametric studies are performed to clarify the effects 

of rotary inertia factor, the visco-Hetenyi substrate, material power index, follower force, and boundary conditions on 

vibration frequencies and instability threshold. The mechanical properties are graded transversely according to a power 

law. Different uniform and non-uniform porosity models are considered. The beam vibrates in variable moisture and 

humidity conditions, and is under an external longitudinal magnetic field. The dynamical equation is derived based on 

generalized Hamilton’s principle and Rayleigh beam theory assumptions. With the aid of the Galerkin method, the 

eigenvalue problem is solved and frequency characteristics and instability boundaries are determined numerically. The 

axial velocity related to static instability is determined analytically. The results show that by increasing the porosity of 

the system with the first type of non-uniform porosity, the stability improves. Similar to hygro-thermal environments, the 

critical axial velocity decreases by increasing the power index. It has been proven that the stability decreases/increases 

by increasing the rotary inertia factor/magnetic field. The results could be useful for the design of axially moving 

inhomogeneous systems in complex environments. 
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1. Introduction 

Axially moving systems have many applications in 

industry, including conveyor belts, robotic arms, and 

crane cables. Studies have shown that in the presence 

of axial movement, a displacement in the perpendicular 

direction of the motion may produce unwanted 

vibration. Therefore, dynamic modeling and vibration 

analysis of these widely applicable structures can play 

an important role in improving the performance of 

industrial structures [1]. Functionally graded materials 

are a category of composite materials whose properties 

change continuously in one or more directions. Due to 

the continuous gradient of mechanical properties of 

functionally graded materials, these materials provide 

better performance properties such as lower stress 

concentration and higher thermal resistance in 

comparison with conventional homogeneous and 

laminated materials. As a result, engineers have 

demonstrated great interest in utilizing these materials 

in axial moving structures [2]. One of the effective 

strategies of structural designers to improve the 

performance of industrial systems is the use of light 

porous materials in the construction of engineering 

structures. Recent studies have revealed that by 

characterizing graded materials with different 

distributions of internal pores, the dynamic behavior of 

systems can be excellently changed. Also, it is possible 

that during the process of production of graded 

materials, micro-voids/pores will be created in the 

structure. Therefore, functionally graded porous 

materials provide a unique potential for a wide range of 

applications in engineering sciences, especially moving 

structures. Therefore, investigation of the effects of 

pores on the vibration of functionally graded systems 

with axial motion is a mandatory engineering 

requirement [3]. However, limited studies have 

investigated the impact of functionally graded porous 

materials on axially moving systems. The performance 

of industrial equipment is highly dependent on its 

environmental conditions. For example, in the presence 

of thermal fields, thermal expansion and, as a result, 

thermal compressive stresses appear in the system, 

which ultimately leads to a change in the vibration 

behavior of the structure. As a result, it can be stated 

that the system vibration can be controlled by applying 

thermal fields. Therefore, predicting the mechanical 

behavior of axially moving industrial structures in 
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complex environments is an engineering necessity [4]. 

Based on the authors’ information, the vibration 

behavior and stability of axially moving beams 

constructed by transversely functionally graded porous 

materials in hygro-thermo-magnetic environments with 

different boundary conditions have not been studied 

analytically and numerically. Also, the impacts of 

various parameters such as viscoelastic substrate, 

follower force, and rotational inertia factor on the 

dynamics of axially moving systems have not been 

reported yet. In this article, the dynamic equation of a 

beam made of functionally graded materials with 

longitudinal movement is derived by considering 

different porosity distribution models. By solving the 

eigenvalue problem, the vibration frequencies of the 

system are calculated. Then, the stability of the system 

is examined by implementing numerical and analytical 

treatments. The results in different conditions are 

validated with the results of available reports in the 

technical literature. Finally, the effects of key 

parameters on the dynamics of the system are specified. 

 

2. Problem Formulation 

The strain energy variations of the system are given 

according to the following equation: 

(1) 𝛿𝑈 = ∫ 𝜎x𝛿𝜀x𝐴d𝑥
𝐿

0

 

The Kinetic energy is calculated by considering the 

effects of transverse and rotational displacement of the 

cross-section, according to the following equation: 
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The external work of hygro-thermo-magnetic fields 

is calculated according to the following equation: 

(3) 𝑊e =
1
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The conservative and non-conservative variations of 

follower force are described as follows: 

(4) δ𝑊V
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The variations in external work by the viscoelastic 

substrate are calculated as follows: 

(6) δ𝑊F = −∫ 𝑁Fδ𝑤
𝐿

0

d𝑥 

The work done by the axial tensile force is 

obtained from the following equation: 

(7) 𝑊P =
1

2
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)
2𝐿

0
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To derive the governing equation, Hamilton’s 

principle is used according to the following 

relationship: 

(8) 𝛿 ∫ (𝑇 +𝑊F +𝑊V
c +𝑊V

nc +𝑊P +𝑊e −𝑈)d𝑡
𝑡2

𝑡1

= 0 

By applying Hamilton’s principle, the governing 

dynamic equation of the motion of the system is obtained 

as follows: 

(9) 

𝐷2𝑤
′′′′ +𝑚0(�̈� + 2𝑈�̇�′ + 𝑈2𝑤′′) − 

𝑚2(�̈�
′′ + 2𝑈�̇�′′′ + 𝑈2𝑤′′′′) + 

(𝑁H +𝑁T + 𝑁M + 𝑉(𝐿 − 𝑥) − 𝑃)𝑤′′ 

+𝑘1𝑤 + 𝑘2𝑤
′′′′ + 𝑐(�̇� + 𝑢𝑤′) = 0 

The Galerkin method is used to discretize the 

dynamic equation and obtain the reduced-order 

equation [5]. The discrete form of the dynamic equation 

of the system is expressed in the matrix form as follows: 

(10) 𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐪(𝑡) = 𝟎 
By solving the eigenvalue problem, eigenvalues are 

obtained. The imaginary part of the eigenvalues are the 

vibration frequencies and the real part of the 

eigenvalues represent the damping in the system. When 

one of the natural frequencies of the beam and the real 

part of the eigenvalue has zero and positive values, 

respectively, static instability (divergence) occurs in the 

system. Also, when one of the natural frequencies and 

the real part of the eigenvalue have positive values, the 

system undergoes dynamic instability (flutter). In these 

cases, the corresponding axial velocities are called 

critical axial velocities [6]. 

 

3. Results and Discussion 

The effects of foundation parameters on the vibration 

behavior are shown in Figure 1. Since the axial velocity 

has a reducing effect on the equivalent rigidity, with the 

increase of the velocity in the longitudinal direction, the 

vibration frequencies decrease. According to the figure, 

by considering the foundation, due to the increase in the 

effective rigidity, the vibration frequencies increase. In 

other words, compared with the case without a 

foundation, the system with a foundation has better 

stability, and static and dynamic instabilities occur at 

higher axial velocities. Therefore, it can be expected 

that by improving the mechanical properties of the 

substrate, the stability will be strengthened. Also, as can 

be seen, the hardening effect of the bending stiffness 

parameter on the dynamic behavior of the system is 

more noticeable compared to the effect of the Winkler 

elastic modulus parameter. Also, the hardening effect 

of the bending stiffness parameter is more tangible in 

higher vibration modes. In Figure 2, the fundamental 

vibration frequency and the real part of the eigenvalues 

branches are shown in terms of the axial velocity by 

considering the foundation damping. According to the 

figure, when considering the foundation damping, the 

critical axial velocity increases. Also, the frequency 

decreases in the damped foundation case. According to 

the figure, in the absence of foundation damping, the 

system loses its stability when the fundamental 

frequency becomes zero. While in the damped 

foundation state, the system can maintain its stability 

by reducing the fundamental frequency to zero and 

increasing the axial velocity. In addition, the real part 

of the eigenvalue branche loses their symmetry 

concerning the horizontal axis. So that they have a non-

zero value for axial velocities lower than the critical 

value. 
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Figure 1. Effect of foundation parameters on 

vibration frequencies of a homogeneous beam  

 
a 

 
b 

Figure 2. (a) Imaginary and (b) real parts of a 

homogeneous beam in terms of axial velocity  

 

4. Conclusions 

In this research, based on Rayleigh beam theory, the 

vibration and stability of axially moving functionally 

graded porous beams rested on a viscoelastic 

foundation with different boundary conditions under 

the effect of hygro-thermo-magnetic fields, axial and 

follower forces are analyzed. The dynamic equation is 

derived based on Hamilton’s generalized principle. The 

reduced-order model equation is obtained with the aid 

of the Galerkin discretization method. The frequency 

characteristics and stability thresholds of the system are 

calculated with the help of numerical and analytical 

methods. The results of this research have been 

compared and validated with the reports in the 

literature. The results show that by increasing the 

viscosity parameter of the foundation, the stability of 

the system improves. Also, the bending stiffness 

parameter has a more stabilizing effect in comparison 

with the effect of the Winkler elastic modulus 

parameter. In addition, with the increase of foundation 

damping, the vibration frequency of the system 

0decreases. Also, the outcomes revealed that the 

reducing effect of the follower force on the vibration 

frequencies can be reduced by increasing the bending 

stiffness parameter and the restraint of the beam 

supports. 
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