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Abstract 
The classical conduction heat transfer model which considers infinite thermal propagation speed, named Fourier model 

and its equations are in elliptic form and has numerous applications. This model is not appropriate for many industrial 

applications, especially in medical applications and thus hyperbolic or non-Fourier model that considers finite heat 

propagation speed should be used. Temperature control in certain points of such systems obeying these types of equations 

is an important problem which has been studied in this paper. In this paper, first, the validity of the conjugate gradient 

method is approved using a known heat flux at a system boundary and then the method is used to estimate the boundary 

condition which leads to a desired temperature distribution in the geometry. Additionally, the modeling and inverse 

problem solution are studied for noise in input data and results showed appropriate accuracy and convergence even for 

considerable noise in input data. 
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1. Introduction 

With the advancement of technology in various fields 

such as industry and medicine, and the entry of 

technology into small-scale areas, both in terms of time 

and space, the classical theory of Fourier heat 

conduction, in which the speed of heat propagation is 

infinite, provides unacceptable results. Therefore, it is 

necessary to use new heat transfer models based on 

limited heat propagation speed. Previously, heat 

transfer processes have been extensively studied using 

the classical Fourier heat conduction model and the 

hyperbolic Fourier model. This model assumes an 

infinite heat propagation speed, which is physically 

impossible. The hyperbolic heat conduction model has 

a more realistic physics by considering limited heat 

propagation speed for heat propagation. 

However, solving such equations mathematically is 

challenging. Nevertheless, recent research has been 

conducted to improve proposed models and develop 

solutions for these problems. Since solving these 

equations may face numerous mathematical problems 

(such as thermal discontinuity), various numerical 

methods have been proposed and developed to address 

these challenges. Heat transfer problems can be 

classified into two categories: direct problems and 

inverse problems. The aim of solving direct problems 

is to obtain the temperature distribution given the initial 

conditions, heat flux, and thermodynamic properties. In 

contrast, the aim of solving inverse problems is often to 

obtain the unknown heat flux based on measured or 

desired temperature. In direct heat transfer problems, 

the cause (heat flux at the boundary) is known, and the 

effect (temperature field inside the body) is determined 

by solving governing equations. In contrast, inverse 

heat transfer problems involve estimating the unknown 

cause based on the known or desired effect. The inverse 

heat transfer method has various applications in 

different fields of science and engineering. However, 

the use of the conjugate gradient method in solving 

inverse problems has a limited history. Lin and Chen 

[1] estimated the boundary heat flux in heat transfer 

problems using a similar method. Park and Chung [2] 

compared the direct differentiation method with the use 

of an adjoint equation to calculate gradients in the 

conjugate-gradient method. Their results showed that 

although the ordinary differentiation method is simple 

and accurate, it increases computation time. The use of 

an adjoint equation to calculate gradients reduces 

computation time significantly. Jarny et al. [3] 

investigated a multi-dimensional inverse conductive 

heat transfer problem using the conjugate gradient 

method and the adjoint equation. Kowsary et al. [4,5] 

also investigated inverse problems involving heat 

conduction and radiation using both the conjugate-

gradient and variable metric methods. 

Mohammadiun and Molavi also studied inverse 
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conduction heat transfer problems using the conjugate 

gradient method [6]. Additionally, Mahdavi and 

Khalkhalian examined the estimation of heat flux on the 

cylinder wall in an internal combustion engine [7], as 

well as convective heat flux through the nozzle throat 

of a rocket engine [8]. Lee et al. employed the conjugate 

gradient method to estimate heat flux in living tissue 

[9]. Goudarzi and Azimi studied direct bio-heat transfer 

with dual-phase lag [10], while Alosaimi and Lesnic 

estimated location-dependent heat sources for 

hyperbolic bio-heat transfer using the conjugate 

gradient method, demonstrating good accuracy even in 

two-dimensional cases [11].The effect of three phase 

lag in bio-heat transfer equation is studied recently by 

Kumar et al. [12]  

Given the numerous capabilities of the conjugate 

gradient method for solving many inverse problems, 

this method has been used in this article to estimate heat 

flux in non-Fourier heat transfer problems. The aim of 

this study is to investigate the ability of the conjugate 

gradient method in solving inverse heat transfer 

problems in the form of hyperbolic equations (non-

Fourier) and temperature control in these problems. 

This method transforms the inverse problem into three 

sub-problems: direct, sensitivity, and adjoint, that will 

be discussed later. 

 

2. Governing Equations 

2.1. Direct Problem 

The governing equations of the direct problem for the 

1D geometry with the known boundary conditions are 

as follows: 
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Here, c, ρ, k, and τ represent thermal conductivity, 

density, specific heat capacity, and relaxation time 

respectively. If all boundary conditions are known, the 

problem is a direct problem and can be solved using the 

implicit method (Crank-Nicolson). 

 

2.2. Inverse Problem 

To solve the mentioned inverse equations, the heat flux 

at one of the boundaries is assumed to be unknown, 

while the other equations (1-1) to (1-5) are given. 

Additionally, this inverse problem requires an extra 

known condition which is the temperature at a specific 

location. The temperature measured by a sensor at that 

location is indicated by Y (0, T), can also be used. The 

desired or measured temperature may include 

measurement errors that will be artificially applied to 

the data. Therefore, the inverse problem can be defined 

as "estimating the unknown boundary heat flux using 

measured or known temperature." Solving this inverse 

problem involves minimizing the following objective 

function. 

(2) fJ[q(l,t)]= [T(0,t)-Y(0,t)]
t 2
t=0

dtò
 

 

2.3. Sensitivity problem 

The sensitivity problem can be derived by perturbing 

the heat flux and temperature by a small amount, 

substituting in the direct problem and deducing from 

the equation (1-1) to (1-5) as follows. 
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2.4. Adjoint problem and gradient equation 

Multiplying the direct equations by Lagrange 

coefficients, integrating over the spatial and temporal 

domains and after some mathematical progress leads to 

the following adjoint problem. 
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The objective function gradient can be computed using 

the solution of the adjoint problem. 
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2.5. Conjugate gradient method 

The following iterative conjugate gradient method is 

used to minimize the objective function: 

1- Solve the direct problem with the initial guess. 

2- Check the stopping criteria and continue the process 

when it is not satisfied. 

3- Solve the adjoint problem and compute the gradient 

of the objective function. 

4- Evaluate the conjugate coefficient and direction of 

descent using the following equations: 
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5- Solve the sensitivity problem by putting   ( )nq P   

6- Compute the search step size as follows: 
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7- Update the heat flux with the following equation and 

continue. 
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3. Results and Discussion  

After validation of the numerical method for solving the 

direct problem, three different shapes desired 

temperatures are used to evaluate the performance of 

the proposed method including sinusoidal, triangle and 

step shape functions. The results showed a very good 

correlation between desired and computed 

temperatures even with the noisy input data. The 

desired and estimated temperatures for aforementioned 

functions are illustrated in Figs. (1) to (3). 

 
Figure 1. Desired and estimated sinusoidal shape 

temperature 
 

 
Figure 2. Desired and estimated triangular 

shape temperature 

 
Figure 3. Desired and estimated step shape 

temperature 
 

4. Conclusions 

In this article, the conjugate gradient method was used 

to estimate the transient boundary heat flux in inverse 

heat conduction problems, aiming to control the 

temperature at specific points within the computational 

domain. Two examples with distinct desired 

temperature profiles were considered to evaluate the 

accuracy and validity of the obtained results. The 

results demonstrate the capability of the proposed 

method, even when dealing with disturbances in the 

input data. 
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