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Abstract 
In this paper, an analytical solution for the nonlinear free vibrations of the functionally graded porous micropipes 

conveying fluid flow by using homotopy analysis method is presented. The equations of motion are obtained based on 

Euler-Bernoulli beam theory and modified couple stress theory with consideration of geometric nonlinearity. It is assumed 

that the micropipe is porous and the porosity distribution is in three forms; uniform, non-uniform symmetric, and non-

uniform asymmetric distributions. The Hamilton principle is used to obtain the governing equations of motion. Also, the 

Galerkin method is used to convert partial differential equations to ordinary differential equations. Finally, by considering 

immoveable simply-supported boundary conditions and using the homotopy analysis method, the analytical solution for 

the governing equation is performed. The results obtained from this method has been verified by the Runge-Kutta 

numerical method which shows that the homotopy analysis method has good accuracy by considering two terms of the 

Taylor series expansion. The results showed that between the proposed porosity distribution schemes in the micropipe, 

the non-uniform asymmetric distribution pattern is the most suitable, because the microtube becomes unstable at a higher 

fluid velocity. 
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1. Introduction 

The analysis of micropipes conveying fluid flow has 

attracted the attention of many researchers due to its 

many applications. Among the applications of fluid-

conveyed micropipes, one can remark the utilization in 

medical science and industry. In medical science, 

micropipes are utilized to inject drugs into cancerous 

tissues. By applying this method, the amount of drug 

consumption is minimized and it is more efficient than 

traditional methods. Using micropipes conveying fluid 

in biosensors, heat transfer and semiconductors are the 

examples of micropipes applications in industry. 

The mathematical modeling of linear vibrations and 

buckling of various pipes (from macro to nano scale) 

under different boundary conditions (e.g. clamped, free 

and hinged) made of functionally graded porous 

materials based on various theories have been carried 

out by numerous researchers [1-3]. Previous 

experimental studies showed that using classical 

theories of continuum mechanics is not appropriate for 

the dynamic modeling of micro- and nano-scale 

structures, and instead, the usage of modified couple 

stress theory is suggested [4].  

The static condition and dynamic behavior of 

microbeams according to the non-classical beam model 

laying on elastic foundation were investigated by 

Şimşek [5]. Nonlinear free vibrations and self-excited 

of clamped micropipes conveying fluid considering 

gravitational effects were studied by Hu et al. [6]. 

Dehrouyeh-Semnani et al. [7] explored the nonlinear 

forced vibrations of micropipes subjected to harmonic 

external forces by applying Runge-Kutta method to 

solve partial differential equation. Babaei et al. [8] 

analyzed the nonlinear dynamic behavior of FG curved 

micropipes in thermal environment subjected to 

uniform lateral pressure. 

In this paper, we explore an analytical solution for 

nonlinear vibrations of microtubes conveying fluid 

made of porous functionally graded materials based on 

homotopy analysis method. The equations of motion 

are based on Euler-Bernoulli beam model in 

conjunction with modified couple stress theory and 

considering geometrical nonlinearity. The governing 

equations of motion are obtained by applying 

Hamilton’s principle and by utilizing Galerkin 

technique, the resulted equations are discretized. 

Finally, Homotopy analysis method is employed to 

solve the nonlinear differential equation. 
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2. FG Porous Microtube 

Assume a micropipe with outer radius, 𝑟𝑜, inner radius, 

𝑟𝑖, length, 𝐿, and mean radius, 𝑟. The velocity of fluid 

flow is Γ along the micropipe length in the x- direction. 

Also, it is assumed that the microtube is made of porous 

FG materials, in which the mechanical properties 

according to the various porosity distribution patterns 

are formulated as 

(1) 
{𝐸, 𝐺} = {𝐸1, 𝐺1}(1 − 𝑒0𝛼) 

𝜌 = 𝜌1√1 − 𝑒𝑚𝛼 

(2) 
{𝐸, 𝐺} = {𝐸1, 𝐺1} (1 − 𝑒0 cos (

𝜋�̌�

𝑡
)) 

𝜌 = 𝜌1 (1 − 𝑒𝑚 cos (
𝜋�̌�

𝑡
)) 

(3) 
{𝐸, 𝐺} = {𝐸1, 𝐺1} (1 − 𝑒0 cos (

𝜋�̌�

2𝑡
+

𝜋

4
)) 

𝜌 = 𝜌1 (1 − 𝑒𝑚 cos (
𝜋�̌�

𝑡
+

𝜋

4
)) 

where 

(4) 

𝑒0 = 1 −
𝐸2

𝐸1

 , 0 ≤ 𝑒0 < 1 

𝑒𝑚 = 1 −
𝜌2

𝜌1

 , 0 ≤ 𝑒𝑚 < 1 

𝑒𝑚 = 1 − √1 − 𝑒0 

�̌� = 𝑟 −
𝑟𝑖 − 𝑟𝑜

2
, 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑜 

𝛼 =
1

𝑒0

−
1

𝑒0

(
2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

 

 

while 𝐸, 𝐺, 𝜌, 𝑡, 𝐸1, 𝐺1 and 𝜌1 are Young modulus, 

shear modulus, fluid density, wall thickness, maximum 

Young modulus, maximum shear modulus and 

maximum density, respectively. 

  
Pattern (2) Pattern (1) 

 
Pattern (3) 

Figure 1. Various porosity distribution patterns 

The governing equations of motion based on Euler-

Bernoulli beam theory and modified couple stress 

theory with consideration of geometric nonlinearity, are 

as follows: 

−
𝜕

𝜕𝑥
{𝐸𝐴̅̅ ̅̅ [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

]} + 𝑚 (
𝜕2𝑢

𝜕𝑡2 +

2Γ
𝜕2𝑢

𝜕𝑥𝜕𝑡
+ Γ2 𝜕2𝑢

𝜕𝑥2) + 𝑀
𝜕2𝑢

𝜕𝑡2 = 0  
(5) 

 

−
𝜕

𝜕𝑥
{[𝐸𝐴̅̅ ̅̅ (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)]
𝜕𝑤

𝜕𝑥
} + 𝑚 (

𝜕2𝑤

𝜕𝑡2 +

2Γ
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ Γ2 𝜕2𝑤

𝜕𝑥2 ) + 𝑀
𝜕2𝑤

𝜕𝑡2 + (𝐸𝐼̅̅ ̅ +

𝐺𝐴̅̅ ̅̅ 𝑙2)
𝜕4𝑤

𝜕𝑥4 = 0  

(6) 

 

The above-mentioned relations are obtained through 

Hamilton’s principle. where 𝑢, 𝑤, 𝑙, 𝑀 and 𝑚 are 

midplane displacement along x-direction, midplane 

displacement along y-direction, material length scale 

parameter, micropipe mass and fluid mass, 

respectively. also, the parameters are defined as 

𝐸𝐼̅̅ ̅ = ∫ ∫ 𝐸(𝑟)𝑟2sin2(𝜃)
𝑟𝑜

𝑟𝑖

2𝜋

0

(𝑟𝑑𝑟𝑑𝜃) 

(7) 𝐺𝐴̅̅ ̅̅ = ∫ ∫ 𝐺(𝑟)
𝑟𝑜

𝑟𝑖

2𝜋

0

(𝑟𝑑𝑟𝑑𝜃) 

𝐸𝐴̅̅ ̅̅ = ∫ ∫ 𝐸(𝑟)
𝑟𝑜

𝑟𝑖

2𝜋

0

(𝑟𝑑𝑟𝑑𝜃) 

 

By considering the immovable hinged boundary 

conditions at both ends of the micropipe, one can write 

the governing equations as follows: 

 

𝐸𝐴̅̅ ̅̅ (𝑢 +
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥) = 𝑥 [
𝐸𝐴̅̅ ̅̅

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
]  (8) 

− [
𝐸𝐴̅̅ ̅̅

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
]

𝜕2𝑤

𝜕𝑥2   
 

+𝑚 (
𝜕2𝑤

𝜕𝑡2 + 2Γ
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ Γ2 𝜕2𝑤

𝜕𝑥2 ) + 𝑀
𝜕2𝑤

𝜕𝑡2 + (𝐸𝐼̅̅ ̅ +

𝐺𝐴̅̅ ̅̅ 𝑙2)
𝜕4𝑤

𝜕𝑥4 = 0  

(9) 

 

3. Solution Procedure 

Galerkin approach is employed to discrete the partial 

differential equation to ordinary differential equation as 

�̈�(𝑡) + 𝑋1�̇�(𝑡) + 𝑋2𝑇(𝑡) + 𝑋3𝑇3(𝑡) = 0 (10) 
where 

𝑋1 = 0 

𝑋2 = −
𝜋2(Γ2𝐿4𝑚 − (𝐸𝐼̅̅ ̅ + 𝐺𝐴̅̅ ̅̅ 𝑙2)𝐿2𝜋2)

𝐿6(𝑚 + 𝑀)
 

𝑋3 =
𝐸𝐴̅̅ ̅̅ 𝜋4

4𝐿4(𝑚 + 𝑀)
 

(11) 

Now by applying homotopy analysis method, we can 

obtain the nonlinear frequency and time response as 

follows: 

𝜔𝑛𝑙 =
1

2
√3𝑋3𝑎2 + 4𝑋2 (12) 

𝑇(𝑡) = 𝑎 cos(𝜔𝑛𝑙𝑡)

+
𝑋3𝑎3

8𝜔𝑛𝑙
2

{cos(𝜔𝑛𝑙𝑡)

− cos3(𝜔𝑛𝑙𝑡)} 

(13) 

Where 𝑇(𝑡)the time response of the center is point of 
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micro pipe and 𝜔𝑛𝑙 is the nonlinear frequency. 

 

4. Validation Study 

The results of this paper are verified with those reported 

by Dehrouyeh-Semnani et al. [7]. Figure 2 is depicted 

to show that the solution of homotopy analysis is 

accurate enough in which a good agreement between 

present study and data reported by Dehrouyeh-Semnani 

et al. [7] can be observed. It should be noted that in this 

figure, the non-dimensional frequency against the non-

dimensional fluid velocity for various flexural rigidities 

are shown. 

 
Figure 2. A comparison between present study and the 

results obtained by Dehrouyeh-Semnani et al. [7] 
 

 

5. Discussion and Results 

The numerical results of time history and nonlinear 

frequency are presented by using data of Table 1. 

 
Table 1. Properties of micropipe and fluid 

Symbol Value Name 

𝑟𝑖 20𝜇m inner radius 

𝑟𝑜 30𝜇m outer radius 

𝐿 15mm length 

𝑙 15𝜇m material length parameter 

𝐸1 200 GPa maximum Young modulus 

of micropipe 

𝐺1 75GPa maximum shear modulus of 

micropipe 

𝜌1 7850Kg/𝑚3 maximum density of 

micropipe 

𝜌 1000Kg/𝑚3 fluid density 

𝑎 30𝜇m initial amplitude 

𝑒0 0.2 porosity 
 

 

As it can be seen from figure 2 that by the increment of 

fluid velocity, the nonlinear frequency deceases until it 

becomes zero. When the nonlinear frequency becomes 

zero, the divergence instability happens. From Eq. (12), 

it can be easily concluded that the nonlinear frequency 

is always greater than linear natural frequency. Figure 

3 is presented to show the effects of various porosity 

distribution patterns on the nonlinear frequency versus 

fluid velocity. As it can be seen, micropipe with 

distribution pattern 1 has the lowest frequency and 

micropipe with distribution pattern 3 has the highest. 

As it was pointed out that the micropipe may lose its 

stability by Divergence when the nonlinear frequency 

becomes zero; therefore, the critical fluid velocity in the 

micropipe with distribution pattern 3, has the highest 

value which means the non-uniform asymmetric 

distribution pattern is most suitable pattern.  

 

 
Figure 3. The effects of various porosity distribution 

patterns on the nonlinear frequency in terms of fluid 

velocity 
 

Figure 4 is depicted to explore the effects of fluid 

density on the nonlinear time history. It can be realized 

that by the increment of fluid density, the time period 

of time history is increased. One can conclude that the 

nonlinear frequency deceases as the effective mass of 

micropipe system increases.  

 

 
Figure 4. The effects of various fluid densities on the 

nonlinear time histories 
 

6. Conclusions 

In this work, we proceed to obtain the governing 

equations of motion by Hamilton’s principle based on 

Euler-Bernoulli beam model and modified couple 

stress theory in conjunction with Von-Kármán 

nonlinearity relations. Three different porosity 

distribution patterns were considered for micropipe 

conveying fluid. The Galerkin method was applied to 

convert the partial differential equations to the ordinary 

differential equations. Finally, by considering 

immoveable simply-supported boundary conditions 

and using the homotopy analysis method, an analytical 

solution for the governing equation of motion was 

performed. The results showed that between the 
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proposed porosity distribution schemes in the 

micropipe, the non-uniform asymmetric distribution 

pattern is the most suitable pattern. Also, by the 

increment of fluid density, the nonlinear frequency is 

decreased. Furthermore, the nonlinear frequency is 

always greater than linear natural frequency. 
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