بررسی اثر به‌کارگیری SiO2/Al در بالا بردن حساسیت آشکارسازهای مادون‌قرمز بر پایه میکروکانتیلیور و مقایسه آن با Si3N4/Au

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار برق-الکترونیک، دانشکده برق، دانشگاه علوم و فنون هوایی شهید ستاری

2 دانشجوی دکتری برق- الکترونیک، دانشگاه صنعتی مالک اشتر

3 کارشناس ارشد برق– الکترونیک، دانش آموخته دانشگاه علم و صنعت ایران

چکیده

در این مقاله، آشکارساز مادون‌قرمز میکروکانتیلیور با حساسیت بالا و بدون نیاز به خنک ساز، طراحی و شبیه­سازی شده است. این آشکارساز شامل، ناحیه جاذب، نواحی دو ماده‌ای و ایزوله و ستون­های نگه­دارنده است. ساختار آن معلق و به صورت دو لایه­ای از جنس دی اکسید سیلیکون (SiO2) به ضخامت µm1 و آلومینیوم (Al) به ضخامت nm200 است. در این آشکارساز، میزان جذب IR و میزان خمش با طراحی ناحیه جاذب به صورت دو ماده‌ای افزایش یافته است. میزان جذب IR با آیینه شدن امواج مادون‌قرمز توسط لایه فلزی افزایش و میزان خمش با امتداد ناحیه دو ماده‌ای تا انتهای ناحیه جاذب بیشتر شده است. برای شبیه­سازی رفتار حرارتی و مکانیکی، از روش آنالیز اجزاء محدود استفاده شده است. اندازه تغییر دما و تغییر جابجایی در نوک آشکارساز (دورترین نقطه نسبت به پایه­ها) به ترتیب، C°651/3ΔT= و nm940ΔZ= شده است. نتایج حاصل از شبیه­سازی با اعمال شرایط مرزی به ازای شار حرارتی ثابت pW/µm2100 روی ناحیه جاذب می­باشند. در این آشکارساز، ضریب انتقال دما، حساسیت ترمومکانیکی، حساسیت توانی، حساسیت دمایی، حساسیت جابجایی و حساسیت  به دمای جسم  به ترتیب، 3-10×7/9،  nm/K284/0،   mW-12/667،  mK/(pW.µm-2 )8/32،   nm/(pW.µm-2)34/9 و  nm/K75/2 محاسبه شدند. این پارامترها نسبت به آشکارساز مشابه از جنس Si3N4/Au به ترتیب، 16، 41، 17، 41، 41 و 38/2 برابر بهبود یافته است.

کلیدواژه‌ها

موضوعات


[1] S Verstockt, T Beji, PD Potter, SV Hoecke, B Sette, B Merci, RV Walle (2013) Video driven fire spread forecasting (f) using multi-modal LWIR and visual flame and smoke data. Pattern Recogn Lett 34(1): 62–69.
[2] R Paugam, MJ Wooster, G Roberts (2013) Use of handheld thermal imager data for airborne mapping of fire radiative power and energy and flame front rate of spread. Ieee T Geosci Remote 51:33853399
[3] SJ Oh, YM Huh, JS Suh, J Choi, S Haam, JH Son (2012) Cancer diagnosis by terahertz molecular imaging technique. J Infrared Milli Terahz Waves 33(1): 74–81.
[4] JR Kuo, MH Chang, CC Wang, CC Chio, JJ Wang, BS Lin (2013) Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals. J Neurosci Meth 214: 204-209.
[5] MS Apu, N Kaabouch (2012) Characteristics of the terahertz sources suitable for biomedical applications. EIT, International Conference, 1-5.
[6] M Korukçu, M Kilic (2009) The usage of IR thermography for the temperature measurements inside an automobile cabin. Int Commun Heat Mass 36: 872-887.
[7] P Chatzakos, N Avdelidis, K Hrissagis, TH Gan (2010) Autonomous infrared (IR) thermography based inspection of glass reinforced plastic (GRP) wind turbine blades (WTBs). Conference on Robotics, Automation and Mechatronics, 557-562.
[8] W Zhang (2010) Remote malfunction diagnosis system based on infrared thermal imaging and RIA. SOPO Symposium 1-5.
[9] T Li, DP Almond, Rees DAS, Weekes B (2011) Crack imaging by scanning pulsed laser spot thermography. NDT and E International, 44(2): 216-225.
[10] Pan C, Zhang J, Shan Y (2013) Effects of exhaust temperature on helicopter infrared signature. Appl Therm Eng 51(1-2): 529-538.
[11] Colombi G, Ondini A, Fortunato L, Balzarotti G (2012) Airborne navigation with onboard infraRed sensors. CNNA Workshop, 1-6.
[12] Kim S, Choi B, Kim J, Kwon S, Kim (2012) Three plot correlation-based small infrared target detection in dense sun-glint environment for infrared search and track. Proc of SPIE 8393: 83930T1-83930T7. 
[13] MS Willersa, CJ Willers (2012) Key considerations in infrared simulations of the missile-aircraft engagement. Proc. of SPIE 8543: 85430N1-85430N16. 
[14] Alayed M, Munir M, Motasem S, Khalid Alghamdi A, Cornelius J, Azwitamisi E, Bezuidenhout DF (2012) Future-proofing an aircraft self-protection IR signature database. Proc. of SPIE, 8543:85430O1-85430O10.
[15] Gray GJ, Aouf N, Richardson M, Butters B, Walmsley R (2013) Countermeasure effectiveness against an intelligent imaging infrared anti-ship missile. Opt Eng 52(2): 02640101-02640110.
[16] Borja R, Pinta JR, Maestre JM (2013) Integration of service robots in the smart home by means of UPnP: A surveillance robot case study. Robot Auton Syst 61: 153–160.
[17] Puckrin E, Turcotte CS, Gagnon MA, Bastedo J, Farley V, Chamberland M (2012) Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications. Proc. of SPIE, 8360: 83600401-83600410.
[18] Luber DR, Marion JE, Fields D (2012) Kestrel: force protection and intelligence, surveillance, and reconnaissance (ISR) persistent surveillance on aerostats. Proc. of SPIE, 8405: 84050L1-84050L4
[19] Cardimona DA, Morath CP, Guidry DH, Cowan VM (2013) Laterally-biased quantum dot infrared photodetector. Infrared Phys Techn 59: 93-99
[20] Razeghi M, Haddadi A, Hoang AM, Huang EK, Chen G, Bogdanov S, Darvish SR, Callewaert F, McClintock R (2013) Advances in antimonide-based Type-II superlattices for infrared detection and imaging at canter for quantum devices. Infrared Phys Techn 59:41-52
[21] Gong C, Zhao Y, Dong L, Hui M, Yu X, Liu X (2013) Short-wave infrared, medium-wave infrared, and long-wave infrared imaging study for optical readout microcantilever array infrared sensing system. Opt Eng 52(2): 0264031-0264036.
[22] Wang B, Lai J, Li H, Hu H, Chen S (2013) Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys Techn 57: 8-13.
[23] Nguyen DT, Simoens F, Ouvrier-Buffet JL, Meilhan J, Coutaz JL (2012) Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements. Ieee Trans Terahertz Sci Technol 2(3): 299-305.
[24] Wang B, Lai J (2012) Vanadium oxide microbolometer with gold black absorbing layer. Opt Eng 51(7): 0740031-0740037.
[25] Xu Z, Yan D, Xiao D, Yu P, Zhu J (2012) Temperature field and residual stress analysis of multilayer pyroelectric thin film. Ceram Int 38(2): 981-985.
[26] Xiumei S, Jieying D, Xueliang M, Yuehua Y, Jiaxiong F (2012) Design and thermal analysis of electrically calibrated pyroelectric detector. Infrared Phys Techn 55: 45-48.
[27] Chen CN (2012) Fully quantitative characterization of CMOS–MEMS polysilicon / titanium thermopile infrared sensors. Sensor Actuat B-Chem 161: 892- 900.
[28] Abe M, Abe Y, Kogushi N, Ang KS, Hofstetter R, Wang H, Ng GI (2013) High-performance modulation-doped AlGaAs/InGaAs thermopiles for uncooled infrared FPA application. Infrared Phys Techn 59: 182-187
[29] An-Di Z, Yong-Jun Z, Xiao-Mei YU (2012) Imaging and characteristics of a bimaterial microcantilever FPA fabricated using bulk silicon processes. Chin Phys Lett 29(5): 0585021-0585024.
[30] Gong C, Zhao Y, Dong L, Hui M, Yu X, Liu X (2013) The tolerable target temperature for bimaterial microcantilever array infrared imaging. Opt Laser Technol 45: 545-550.
[31] Su B, Duan G, Zhang C (2010) A detection technology of THz based on surface plasmon resonance. Proc. of SPIE 7854: 78541H1-78541H9.
[32] B Su, G Duan (2011) A high sensitivity THz detector. Proc. of SPIE 8195: 81951K1-81951K7.
[33] Toy MF, Ferhanoglu O, Torun H, Urey H (2009) Uncooled infrared thermo-mechanical detector array Design, fabrication and testing. Sensor Actuat A-Phys 156(1): 88-94.
[34]  Huang  S,   Tao  H,   Lin  IK,   Zhang  X  (2008) Development of double-cantilever infrared detectors fabrication, curvature control and demonstration of thermal detection. Sensor Actuat A-Phys 45(146) 231-240.
[35] Wang W, Chen D (2007) An uncooled optically readable infrared imaging detector Sensor Actuat A-Phys 133(1): 236-242.
[36] Hunter SR, Amantea RA, Goodman LA, Kharas Sergey Gershtein DB, Matey JR, Perna SN, Yu Y, Maley N, White LK (2003) High sensitivity uncooled microcantilever infrared imaging arrays. Infrared Technology and Applications XXIX, Proc. of SPIE, 5074: 469-480.
[37] Hunter SR, Maurer G (2006) High sensitivity uncooled microantilever infrared imaging arrays. Proc. of SPIE, 6206: 1-12.
[38] Wang W, Upadhyay V, Munoz C, Bumgarner J, Edwards O (2006) FEA Simulation, Design and fabrication of uncooled MEMS capacitive thermal detector for infrared FPA imaging. Infrared Phys Techn XXXII Proc of SPIE 6206: 62061L1-62061L12.
[39] Wang W, Upadhyay V, Bumgarner J (2006) Simulation and experimental studies of an uncooled MEMS capacitive infrared detector for thermal imaging. J PHYS Conference Series 34: 350-355.
[40] Grbovic D, Lavrik NV, Rajic S, Datskos PG (2008) Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors. J Appl Phys 104: 0545081-0545081.
[41] Grbovic D, Rajic S, Lavrik NV, Datskos PG (2008) Progress with MEMS based UGS (IR/THz). Unattended Ground, Sea, and Air Sensor Technologies and Applications X Proc of SPIE, 6963: 696317-69631711.
[42] Grbovic D, Karunasiri G (2009) Fabrication of bi-material MEMS detector arrays for THz imaging. Terahertz Physics, Devices, and Systems III, Proc. of SPIE 7311: 7311081-7311087.
[43] Vashist SK (2007) A review of microcantilevers for sensing applications. J Nanotechnology 3: 1-15.
[44] Datskos PG, Lavrik NV, Rajic S (2004) Performance of uncooled microcantilever thermal detectors. Rev Sci Instrum 75(4): 1134-1148.
[45] Zhao Y, Mao M, Horowitz R, Majumdar A, Varesi J, Norton P, Kitching J (2002) optomechanical uncooled infrared imaging system design, microfabrication, and performance. J Microelectromech S 11(2): 136 - 146.