استفاده از شبکه عصبی و الگوریتم ژنتیک در بدست آوردن ماکزیمم پاسخ سیستم نامیزان

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه صنعتی اصفهان

3 دانشگاه صنعتی شاهرود

چکیده

دیسک و پره سیستمی است که از تعداد مشخصی قطاع با خصوصیات هندسی و ماده یکسان تشکیل شده است. اما در عمل همواره اختلافات کوچکی در خصوصیات فیزیکی سیستم وجود دارد. این اختلافات می‌تواند ناشی از تولرانس‌های ساخت باشد. همچنین کارکرد زیاد سیستم و استهلاک ناشی از آن از دیگر عوامل بوجودآمدن نامیزانی در سیستم هستند. در اثر این پدیده، تفاوت‌های بسیار زیادی در پاسخ دینامیکی سیستم نسبت به حالت میزان ملاحظه می‌شود. در تحقیق حاضر از شبکه عصبی و الگوریتم ژنتیک به‌عنوان روشی کارآمد، سریع و دقیق برای بدست آوردن ماکزیمم پاسخ فرکانسی سیستم دیسک و پره استفاده شده است. برای این کار، ابتدا مدل اجزاء محدود سیستم دیسک و پره در محیط نرم افزار انسیس ایجادشد. پاسخ فرکانسی پره ها در حالت میزان بدست آمد. سپس طی دویست مرحله آزمایش برای دانسیته های متفاوت، ماکزیمم پاسخ سیستم نامیزان برای هر آزمایش بدست آمد. در ادامه با استفاده از شبکه عصبی و الگوریتم ژنتیک ماکزیمم پاسخ فرکانسی محاسبه شد. با δjهای بدست آمده برای حالت ماکزیمم پاسخ، مدل جدید در نرم افزار انسیس ایجاد شد و ماکزیمم پاسخ فرکانسی بدست آمد. مطابقت قابل قبول پاسخ بدست آمده از نرم افزار با پاسخ بدست آمده از شبکه عصبی و الگوریتم ژنتیک، کارایی روش به کار رفته را نشان می دهد.

کلیدواژه‌ها


[1] Yoo HH, Kim JY, Inman DJ (2003) Vibration localization of simplified mistuned cyclic structures undertaking external harmonic force. J Sound Vib 261: 859–870.

[2] Rao JS (1991) Turbomachine blade vibration. Whiley, New Dehl.

[3] You H (1995) Forced vibration characteristics of bladed disc assemblies. PhD Thesis, Imperial College of Science, Tecnology & Medicines, University of London.

[4] Petrov EP (1988) Determination the worst blade mistuning upon forced vibration of impellers using the nonlinear programming methods. Abstracts of the conference mathematical simulation of processes and structures of power and transport turbines in CAD-CAM systems, Gotvald, Ukraine 3: 71–72.

[5] Petrov EP, Ewins DJ (2003) Analysis of the worst mistuning patterns in bladed disk assemblies. J Turbomach 125(4): 623–632.

[6]  Whitehead DS (1966) Effects of mistuning on the vibration of turbomachinary blades. J Mech Eng Sci 8: 15–21.

[7] Whitehead DS (1976) Effects of mistuning on forced vibration of blades with mechanical coupling. J Mech Eng Sci, Vol. 18, No. 6.

[8] Wagner JT (1967) Coupling of turbomachine blade vibrations through the rotor. ASME, J. Eng. Power, Vol. 89, No. 4.

[9] Dye RCF, Henry TA (1969) Vibration amplitudes of compressor blades resulting from scatter in blade natural frequencies. ASME J Eng Power 91: 182–187.

[10] Ewins DJ (1969) The effect of detuning upon the forced vibration of bladed disks. J Sound Vib 9: 65–79.

[11] Ewins D, Han ZC (1984) Resonant vibration levels of a mistuned bladed disk. ASME J Vib. Acoust 106: 211–217.

[12] Afolabi DH (1982) Vibration of mistuned bladed disc assembly. PhD thesis, Imperial College of Science, Technology & Medicines, University of London.

[13] Afolabi DH (1982) A note on the rogue failure of turbine blades. J. Sound Vib. 122(3): 535–545.

[14] Afolabi DH (1988) Vibration amplitudes of mistuned blades. ASME, J. Turbomach, 110: 251–257.

[15] King ME, Layne PA (1998) Dynamic of nonlinear cyclic systems with structural irregularity. Nonlinear Dynam 15: 225–244.

[16] Petrov EP, Sanliturk KY, Ewins DJ (2002) A new method for dynamic analysis of mistuned bladed disks based on the exact relationship between tuned and mistuned systems. Transactions of the ASME 124: 586–597.

[17] Bladh R, Castanier MP, Christophe P (2000) Component mode modeling of mistuned bladed disk vibration. 5th National Turbine Engine High Cycle Fatigue Conference, Chandler, Arizona.

[18] Lim SH (2005) Dynamic analysis and design strategies for mistuned bladed disk. PhD thesis, University of Michigan, Mechanical Department.

[19] Chiu YJ, Huang ShCh (2007) The influence on coupling vibration of a rotor system due to a mistuned blade length. J Mech Sci 49: 522–532.

[20] Chan YJ, Ewins DJ (2010) Management of the variability of vibration response levels in mistuned bladed discs using robust design concepts. Part 1 Parameter design, J Mech Syst Signal Pr 24: 2777–2791.

[21] Bladh R, Castanier MP, Pierre C (2001) Component-Mode-Based reduced order modeling techniques for mistuned bladed disks—Part II. Application, J Eng Gas Turb Power 123: 100–108.

[22] Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, Reading, MA: Addison-Wesley.

[23] Gallinari P, Thiria S, Badran F, Fogelman-Soulie F (1991) On the relations between discriminant analysis and multilayer perceptrons. Neural Networks 4: 349–360.

[24] EL-Bayoumy LE, Srinivasan AE (1975) Influence of mistuning on rotor blade vibration. AIAA Journal 13: 460–464.

[25] Griffin JH, Hoosac TM (1984) Model development and statistical investigation of turbine blade mistuning. J. Vib Acoust Stress 106: 204–210.

[26] Sanliturk KY, Imregun M, Ewins DJ (1992) Statistical analysis of random mistuning of bladed assemblies. J. Mech. Eng. C432 (110): 51–57.

[27] Rahimi M, Ziaei-Rad, S (2010) Uncertainty treatment in forced response calculation of mistuned bladed disk. J. Math Comput Simulat, 80: 1746–1757.