کنترل‌کننده ترمینال غیر منفرد مودلغزشی مرتبه کسری با استفاده از الگوریتم سوپرتوئیستینگ برای ربات دو درجه آزادی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشگاه صنعتی شاهرودانشجوی کارشناسی ارشد، مهندسی مکاترونیک، دانشگاه صنعتی شاهرود، شاهرودد

2 دانشیار، مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

در این تحقیق، الگوریتم سوپرتوئیستینگ به همراه تعریف سطح لغزش به صورت ترمینال غیر منفرد مودلغزشی با استفاده از حسابان مرتبه کسری ، ارائه شده است. در کنترل به روش مقاوم در ربات‌ها، یکی از مسائل مورد بررسی کاهش خطای سیستم و همچنین کاهش پدیده چترینگ می‌باشد. یکی از کاربردهای کنترل‌کننده مود لغزشی مرتبه بالاتر کاهش چترینگ است. همچنین استفاده از حسابان کسری در طراحی کنترل‌کننده دقت بیشتری را به ارمغان می‌آورد و باعث کاهش خطا در سیستم می‌شود. نوآوری کار حاضر، استفاده از کنترل‌کننده مودلغزشی مرتبه بالاتر با استفاده از الگوریتم سوپرتوئیستینگ و ترمینال غیر منفرد مود لغزشی مرتبه کسری برای ربات سری دو لینکی می‌باشد. طراحی کنترل‌کننده مورداستفاده به گونه ایست که مستقل از مدل ربات بوده و بر اساس خطای سیستم، کنترل‌کننده شکل گرفته است. تجزیه ‌و تحلیل پایداری سیستم حلقه بسته با استفاده از روش لیاپانوف انجام‌شده است. نتیجه طراحی صورت گرفته از دقت بالا و همگرایی سریع و مقاوم بودن مناسبی برخوردار است.

کلیدواژه‌ها


[1] Das S (2008) Functional fractional calculus for system identification and controls. Springer, Berlin, Heidelberg.
[2] Capelas de Oliveira E (2019) Solved Exercises in fractional calculus. Springer.
[3] David S, Balthazar J.M, Julio B, Oliveira C (2012) The fractional-nonlinear robotic manipulator: Modeling and dyn. sim., AIP pp. 298-305.
[4] Coronel-Escamilla A,Torres F, Gómez-Aguilar J, Escobar-Jiméne R, Guerrero-Ramírez R (2018) On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Syst Dyn 43(3) 257-277.
[5] Goodwine B (2014) Modeling a multi-robot system with fractional-order differential equations. (ICRA), IEEE 1763-1768.
[6] Wensong J, Zhongyu W, Mourelatos Z.P (2016) Application of nonequidistant fractional-order accumulation model on trajectory prediction of space manipulator. IEEE ASME Trans Mechatron 21(3): 1420-1427.
[7] Al-Saggaf UM, Bettayeb M, Djennoune S (2017) Super-twisting algorithm-based sliding-mode observer for Synchronization of nonlinear incommensurate fractional-order chaotic systems Subject to unknown inputs. Arab J Sci Eng 42(7): 3065-3075.
[8] Mujumdar A, Tamhane B, Kurode S (2014) Fractional order modeling and control of a flexible manipulator using sliding modes. IEEE 2011-2016.
[9] Chen H, Chen W, Chen B (2013) Robust synchronization of incommensurate fractional-order chaotic systems via second-order sliding mode technique. IEEE 3147-3151.
[10] Bettayeb R.F.M ,Rahman M.H (2018) Control of serial link manipulator using a fraction al order controller. IREACO 11(1).
[11] Mohammed RH, Bendary F, Elserafi K (2016) Trajectory tracking control for robot manipulator using fractional order-fuzzy-PID controller. Int J Comput Appl 134(15): 8887.
[12] Moreno AR, Sandoval VJ (2013) Fractional order PD and PID position control of an angular manipulator of 3DOF. IEEE 89-94.
[13] Angel L, Viola J (2018) Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans 79 172-188.
[14] Dumlu A (2018) Practical position tracking control of a robotic manipulator based on fractional order sliding mode controller. Elektronika ir Elektrotechnika 24(5): 19-25.
[15] Rahmani M, Rahman M.H (2019) A new adaptive fractional sliding mode control of a MEMS gyroscope. Microsyst Technol 2(9): 3409-3416.
[16] Mujumdar A, Kurode S, Tamhane B (2013) Fractional order sliding mode control for single link flexible manipulator, (CCA). IEEE 288-293.
[17] Ghasemi I, Ranjbar Noei A, Sadati J (2018) Sliding mode based fractional-order iterative learning control for a nonlinear robot manipulator with bounded disturbance. Meas Control 40(1): 49-60.
[18] Senejohnny D, Faieghi M, Delavari H (2017) Adaptive second-order fractional sliding mode controlwith application to water tanks level control.
[19] Muñoz-Vázquez AJ, Sánchez-Torres DJ, Parra-Vega V, Sánchez-Orta A, Martínez-Reyes F (2020) A fractional super-twisting control of electrically driven mechanical systems. Meas Control 42(3): 485-492.
[20] Caponetto R, Graziani S, Tomasello V, Pisano A (2015) Identification and fractional super-twisting robust control of IPMC actuators. Fract Calc Appl Anal 18(6): 1358.
[21] Levant A (1993) Sliding order and sliding accuracy in sliding mode control; Int J Control 58(6): 1247-1263.
[22] Patel A (2018) Observer based fractional second-oreder nonsingular terminal multisegment sliding mode control of SRM position regulation system. IAEME.
[23] Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11): 1957-1964.
[24] Wang YY, Chen JW, LGu LY, Li XD  (2015) Time delay control of hydraulic manipulators with continuous nonsingular terminal sliding mode. J Cent South Univ 22(12): 4616-4624.
[25] Ma X, Zhao Y, Di Y (2020) Trajectory Tracking control of robot manipulators based on U-model. Math Probl Eng 2020(8): 1-10.
[26] Divandari M, Rezaie B, Ranjbar Noei A (2019) Speed control of switched reluctance motor via fuzzy fast terminal sliding-mode control. Comput Electr Eng 80: 106472.
[27] Baek J, Kwon W, Kang C (2020) A new widely and stably adaptive sliding-mode control with nonsingular terminal sliding variable for robot manipulators. IEEE 43443-43454.
[28] Babaie M, Rahmani Z, Rezaie B (2019) Designing a switching controller based on control performance assessment index and a fuzzy supervisor for perturbed discrete-time systems subject to uncertainty. Autom Control Comp S 53: 116-126.
[29] Wang Y, Gu L, Gao M, Zhu K (2016) Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles. Asian J Control 18: 247-265(1).
[30] Nguyen S.D, Vo HD, Seo TI (2017) Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator. ISA Trans 70: 309-321.
[31] Wang Y, Jiang S, Chen B, Wu H (2018) A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators. Adv Eng Softw 119: 21-29.
[32] Deng W, Yao J, Ma D (2017) Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation. ISA Trans 70: 269-278.
[33] Sadeghi R, Madani SM, Ataei M, Kashkooli MA, Ademi S (2018) Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Trans Indus Electronics 65(11): 9147-9156.
[34] Jin M, Lee J, Chang PH, Choi C (2009) Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control IEEE Trans Indus Electronics 56(9): 3593-3601.
[35] Kali Y, Saad M, Benjelloun K, Khairallah C (2018) Super-twisting algorithm with time delay estimation for uncertain robot manipulators. Nonlinear Dyn 93(2): 557-569.
[36] Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. elsevier.
[37] Rivera J, Garcia L, Mora M, Raygoza J, Ortega S (2011) Super-twisting sliding mode in motion control systems. Sliding Mode Control 237-254.
[38] Sabatier J, Lanusse P, Melchior P, Oustaloup A  (2015) Fractional order differentiation and robust control design. Springer, Dordrecht.