بررسی دینامیکی میکروتیر حاوی جریان سیال بر روی بستر ویسکوالاستیک-پسترناک و تحت بار محوری با استفاده از نظریه تنش کوپل اصلاح شده

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران.

2 کارشناس ارشد، گروه مهندسی مکانیک، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

چکیده

در این مقاله، دینامیک خطی میکروتیر حاوی جریان داخلی سیال تراکم ناپذیر بر روی بستر ویسکوالاستیک-پسترناک غیرخطی و تحت تاثیر بار محوری بر اساس نظریه تنش کوپل اصلاح شده، مورد بررسی قرار گرفته‌است. معادله حاکم بر حرکت میکروتیر با استفاده از اصل ‌هامیلتون استخراج شده‌ و سپس با استفاده از روش گالرکین حل شده‌‌است. شرایط تکیه‌گاهی گیردار-آزاد و گیردار-گیردار و سطح مقطع تیر به صورت مستطیلی و دایره‌ای توخالی در نظر گرفته شده‌است. اثر تغییر پارامترهای مختلف مانند سرعت جریان سیال، پارامتر مقیاس طول (اثر اندازه)، سفتی خطی و غیرخطی ، میرایی، سفتی لایه برشی لزج بستر و نیروی محوری بر روی فرکانس طبیعی خطی و غیرخطی میکروتیر بررسی شده‌است. افزایش نیروی محوری فشاری به کاهش فرکانس‌های طبیعی میکروتیر می‌انجامد. همچنین، محدوده پایداری میکروتیر با تکیه‌گاه گیردار-آزاد نسبت به میکروتیر با تکیه‌گاه گیردار-گیردار کمتر است. با در نظر گرفتن نظریه تنش کوپل اصلاح شده، فرکانس و سرعت بحرانی و در نتیجه محدوده پایداری بزرگتری نسبت به مدل کلاسیک تیر پیش‌بینی می‌گردد.

کلیدواژه‌ها


[1] Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed-Nanotechnol 4: 183-200.
[2] Modarres-Sadeghi Y, Paidoussis MP, Semler C (2008) Three-dimensional oscillations of a cantilever pipe conveying fluid. Int J Nonlin Mech 43(1): 18-25.
[3] Ghayesh MH, Paidoussis MP, Amabili M (2013) Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J Sound Vib 332(24): 6405-6418.
[4] Wang Q, Liew KM (2007) Application of      nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363: 236-242.
[5] Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. Int J Eng Sci 85: 20-30.
[6] Dai HL, Wang L, Ni Q (2015) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluid 18: 49-55.
[7] Wang L, Liu HT, Ni Q, Wu Y (2013) Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71: 92-101.
[8] Xia W, Wang L (2010) Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid Nanofluid 9: 955-962.
[9] Ahangar S, Rezazadeh G, Shabani R, Ahmadi G, Toloei A (2011) On the stability of a microbeam conveying fluid considering modified couple stress theory. Int J Mech Mater Des 7: 327-342.
[10] Kural S, Özkaya E (2017) Size-dependent vibrations of a microbeam conveying fluid and resting on an elastic foundation. J Vib Control 23(7): 1106-1114.
[11] Zhang J, Meguid SA (2016) Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. Eur J Mech A-Solid 58: 1-9.
[12] Akgoz B, Civalek O (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82: 423-443.
[13] Akgoz B, Civalek O (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49: 1268-1280.
[14] Akgoz B, Civalek O (2013) A size-dependent shear deformation beam model based on the     strain gradient elasticity theory. Int J Eng Sci 70: 1-14.
[15] Yin L, Qian Q, Wang L (2011) Strain         gradient beam model for dynamics of microscale pipes conveying fluid. Appl Math Model 35: 2864-2873.
[16] Hosseini M, Bahaadini R (2016) Size dependent stability an alysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int J Eng Sci 101: 1-13.
[17] Gregory R, Paidoussis M (1966) Unstable oscillation of tubular cantilevers conveying fluid.   I. Theory. P Roy Soc Lond A Mat. 423(1730): 14-40.
[18] Holmes P (1977) Bifurcations to divergence      and flutter in flow-induced oscillations: A         finite dimensional analysis. J Sound Vib 53(4): 471-503.
[19] Yang T-Z, Ji S, Yang X-D, Fang B (2014) Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci 76: 47-55.
[22] Ebrahimi-Mamaghani A, Khadem SE (2016) Vibration analysis of a beam under external periodic excitation using anonlinear energy sink. Modares Mechanical Engineering 16(9): 186-194. (in Persian)
[23] Ebrahimi-Mamaghani A, Sotudeh-ghrebagh R, Zarghami R, Mostoufi N (2019) Dynamics of two-phase flow in vertical pipes. J Fluid Struct 87: 150-173.
[24] Ebrahimi-Mamaghani A, Mirtalebi SH,  Ahmadian MT, Mostoufi N (2020) Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express 6(12): 1250c5.
[25] Mirtalebi SH, Ebrahimi-Mamaghani A,  Ahmadian MT, Mostoufi N (2019) Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes. IFAC-PapersOnLine 52(10): 382-387.
]26[ سعیدیها م، کرمی محمدی ا (1398) تحلیل ارتعاشات لوله حاوی جریان سیال، از جنس ماده هدفمند تابعی در راستای ضخامت. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 116-107 :(4)9.
]27[ رضایی م، عرب ملکی و (1398) ارائه حل تحلیلی برای مطالعه رفتار دینامیکی لوله‌های ویسکوالاستیک حامل سیال با اعمال فرم کلی مدل ساختاری. نشریه پژوهشی مهندسی مکانیک ایران 29-6 :(1)21.
[28] Kheiri M (2014) Dynamics of a pipe conveying fluid flexibly restrained at the ends. J Fluid Struct 49: 360-385.
[29] Boresi P, Chong KP, Lee JD (2011) Elasticity in engineering mechanics. 3rd edn. John Wiley & Sons, Inc.
[30] Saad M (2014) Elasticity, theory, applications, and Numerics. 3rd edn. Academic Press.