پالت‌های ساندویچی معمولاً به دلیل نسبت استحکام به وزن و جدیدترین بالا کاربرد و سیاستی در صنایع مختلف از جمله هوافضا، صنایع دفاعی و خودروسازی دارند. این مطالعه به بررسی استحکام و کارایی پالت‌های مختلف از فوم‌های پلی‌ورتان با چگالی کمی که بین دو پوسته آلومینیوم ساندویچ، شده می‌باشد. در این مقاله، با نسبت فوم‌های پلی‌ورتان با ضخامت‌های مختلف و ساختمان پالت‌های ساندویچی از ورق‌های آلومینیومی و هسته فوم پلی‌ورتان، با استفاده از دستگاه شکل توب انفجاری و انجام تعدادی آزمایش انفجاری هدفمند، اثر ضخامت فوم در مقدار پالبکی سطح پشتی ساندویچی و میزان جذب انرژی آن، وارد مطالعه قرار گرفته است؛ همچنین با استفاده از نتایج آزمایش شکل انفجاری شده روز فرم، شبیه‌سازی سازه ساندویچی تحت بر انفجاری به کمک نرم‌افزار اندویدین انجام شده است. مقایسه نتایج با پنکر این است که بین نتایج تجربی و عددي، تطبیق خوبی وجود دارد. بررسی‌های تجربی و مطالعات پیامدیک انجام شده، نشان می‌دهد که با افزایش ضخامت فوم و ضخامت روی پشتی ساندویچی، جابجایی روی پشتی کاهش یافته و میزان جذب انرژی نیز به افزایش می‌یابد.

کلمات کلیدی: پالت‌های انفجاری، پالت ساندویچی، فوم پلی‌ورتان، جذب انرژی، شکل توب.

Experimental and Numerical Study of Core and Face-Sheet Thickness Effects in Sandwich Panels with Foam Core and Aluminum Face-Sheets Subjected to Blast Loading

R. Khondabi¹, H. Khodarahmi², R. Hosseini³, M. Zia Shamami⁴

¹ MS.c. Student, Mech. Eng., Imam Hosein Univ., Tehran, Iran.
² Prof., Mech. Eng., Imam Hosein Univ., Tehran, Iran.
³ Assis. Prof., Mech. Eng., Imam Hosein Univ., Tehran, Iran.
⁴ Ph.D. Student, Mech. Eng., Guilan Univ., Rasht, Iran.

Abstract

Sandwich panels, due to high strength to weight ratio and energy absorption properties, are widely used in various industries including aerospace industries, marine and automotive industries. This study explored the strength and performance of panels composed of low-density polyurethane foam core sandwiched between two aluminum skins. In this article several aluminum sandwich panels with polyurethane foam core having different thickness were designed and tested using a shock tube facility. Some blast test were performed in order to determine the effects of foam thickness on displacement of back face-sheet and energy absorption of sandwich structures. Also using the compression test results performed on the foam, numerical simulation using Autodyne software were performed. There was a good agreement between experimental investigation and numerical results. Using experimental investigation and parametric studies, it is shown that the amount of displacement of back face-sheet of sandwich structures is decreased and energy absorption is increased as foam and back face-sheet thickness is increased.

Keywords: Blast Loading; Sandwich Panel; Polyurethane Foam; Energy Absorption, Shock Tube.

DOI: 10.22044/jsfm.2018.7230.2663
1- مقدمه

استخبارات ساندوبیقی با همست سلولی (مانند فوم پلیمری)، عامل بر کاربردهای سازه‌ای، به عنوان جاذبه‌های ضریب و انرژی نیز به کار می‌روند. به‌طور کلی، انرژی سازه‌های ساندوبیقی، به دلیل نسبت استحکام به وزن و جذب انرژی سیبی با سایر گونه‌های محول و توجه محققان واقع شده است. استخبارات سیبی این سازه‌ها، قابلیت تغییر شکل‌های پلاستیکی زیادی در مقابل بالاراهی انجرای را داراست که با توجه به چنین خصوصیت‌های مقدار زیادی از انرژی نباید از بروز ایمپالس قبل از اینچیک می‌شود که موجب تخریب سازه گردد. [1]

مواد و سازه‌نگاری که به عنوان جاذبه‌های انرژی به کار می‌روند، عموماً دارای منحنی‌های نشست-کره‌کنده و یک‌تخته‌سازی می‌باشند. این جاذبه‌ها در تنش که به تنش تپانده می‌شوند، یک فضه با همست هنگامی به عنوان جاذب انرژی محسوب می‌شود که بتواند بخشی از مقدار کرکش در نتیجه این تغییر شکل را داشته باشد. به همین دلیل اگر کرکش‌های انرژی، اولارا مربوط به تنش تپانده یا هرگونه قطعه، مقدار این جاذب شده است. سطح میزان مناسب باید باعث انجرای جذب شده در واحد حجم اولیه است. بنابراین موادی که منحنی‌های کشیده‌تر داشته باشند، مقدار انرژی بیشتری را می‌توانند جذب نمایند. [2]

اگر کاربردهای محتمل ورودی روان سازه‌های ساندوبیقی با همست فوم قلی با همست لزه‌یزی بوده، گروی‌پرسی و خارجی اجزاء آزمایشگاهی خود را به اندازه‌ی خرج در TNT انرژی داخل سازه‌های ساندوبیقی با همست قلی سازه‌های ساندوبیقی به روش نازک‌تر نسبت به دیگر فول‌لود یا سیبی، می‌تواند کرک‌کنده‌ها در علاوه به اندازه‌ی سازه‌سازی مقدار مناسب به‌دست آید که باعث انجرای سیبی و اعمال تبثم‌های فیزیکی منجر به تخریب سازه‌های ساندوبیقی خواهد شد. [3]

2. نتایج حاصل باسنگ‌عملکرد موفق سیر فنا شونده مورد استفاده در کنترل و میزان نمونه امواج تبثم‌های فیزیکی منجر به تخریب سازه‌های ساندوبیقی می‌شود. [4]

1. Plateau stress
2. Guruprasad and Mukherjee
3. Hanssen et al.
4. Double-Curved Shape
5. Ma and Ye
6. Karagiozova et al.
7. Shen et al.
8. Theobald et al.
9. Yazici et al.
مقامات انفجاری باله‌های ساندویچی برپسی کردند. آن‌ها به‌طور محسوس می‌شد که کافیت مناسبی در انرژی جنبشی و ذخیره شده و ارزی کردن مکعب وجود داشته است.\[13\] رامان و همکاران پی-پورتین الاستروما را برای تقویت سازه‌های بی‌نتیح بازدارگان دیمانکسی را مورد چسب‌گیری قرار داده. این مطالعه در برای بازدارگان دیمانکسی بود. این‌ها تعدادی از آزمایش تجاری روش تحویل‌های بینی به‌ویژه شده به‌صورت روش مشابه از نظر ماحول فراگیری و ضخامت‌های دیمانکسی با تغییر نرخ کرنش انجام شده. با استفاده از دیمانکسی نشته، شکست و چگالی انرژی کرنش بر ارزیابی احتمال روش پیشنهادی استفاده شده است. لایه‌های چپ‌دریایی ضخامت 1 تا 4 میلی‌متر باعث افزایش 29 تا 89 برابر کرنش شکسته 3 تا 113 برای چکان انرژی کرنش و افزایش نهایی بین نشته دیمانکسی تحت شرایط دیمانکسی در مقایسه با پایه دیمانکسی نمود بینی به‌ویژه شده این‌ها علاوه بر این، افزایش دیده‌گیری دیمانکسی نمود مزایای به‌ویژه پایه‌ای است که به‌ویژه روی دو طرف قرار می‌گیرد.\[14\] به‌ویژه، این‌ها به‌ویژه به‌واسطه طراحی‌های بازدارگان، مقایسه‌های مقامات انفجاری باله‌های ساندویچی اگزتیک و ترموپلاستیک، با انرژی‌های پیش‌انداز انجام داده‌اند. این‌ها افرادی‌های ساندویچی‌ها که وارد پایه‌ای می‌شوند تحت شرایط دیمانکسی انجام داده‌اند. رای

4 Raman et al.
5 Imbalzano et al.

مکانیک سازه‌ای و شاره‌ای د. سال 1397/ دوره 8/ شماره 3
سندپویی مورد نظر از قوم پلی‌پورتان با سلول‌های بسته و نسبت گچ‌گالی 8 درصد تهیه شده است. برای اتصال روبرها به هسته از چسب کرافت رازی استفاده شده است.

شکل 1- شماتیک نگهداری فلزی به همراه ماده منفجره و چاشنی الکتریکی قرار گرفته داخل آن

در این پژوهش، برای اولین بار به صورت تجاری و عدیع عامل‌کردن بلوک سندپویی به منظور قوم پلی‌پورتان در برای افزایش عمر محدود بررسی قرار گرفته و اثر ضخامت قوم و روبرها در مقادیر جابجا سطح شیبی و میزان جذب انرژی پال بررسی شده است. بلوک سندپویی با روبره‌های الکوبومیوی و هسته قوم پلی‌پورتان با ضخامت‌های مختلف ساخته شده و برای انجام تحت باگذاری انفجار قسمت‌های افزایش و ناب‌سنجی نتایج عدیع با نتایج تجاری، پارامترهای دیگر به صورت عدیع بررسی شدهاند.

2- بررسی‌های تجربی

2-1- خصوصیات مواد اولیه

ماه‌های منفجره مورد استفاده برای از آزمایش‌های تجاری انفجار، از نوع C4 است. این ماده منفجره حالت خمیری دارد و به راحتی قابل شکل‌دهی و قالب‌گیری است. برای تابی‌گی، داشتن و قالب‌گیری و ایجاد دیسک خرج با شکل مورد نظر، برای هر از آزمایش یک نگهدارنده از جنس تفلون ساخته شده است. مقادیر ماده منفجره در تمامی آزمایش‌ها ثابت و با برای 6 گرم در نظر گرفته شده. شکل دیسک خرج و قالب آن برای هر آزمایش به شکل یک دست استاندارد شکل نظر گرفته شده و قطع و ارتفاع آن به ترتیب برای 24 و 3 میلی‌متر است. چهار منفجره از چاشنی الکتریکی استفاده شده است. این چاشنی در وسط نگهدارنده تفلون و پشت دیسک خرج قرار می‌گیرد. در شکل 1 نگهدارنده تفلونی به همراه ماده منفجره و چاشنی الکتریکی قرار گرفته داخل آن نادیده نشده است.

در این پژوهش از الکوبومیوی و هسته قوم پلی‌پورتان به صورت ساخت بلوک سندپویی مورد استفاده شده است (شکل 2). برای اطمینان بهتر از صحت تتابع طبق استاندارد، آزمایش‌ها روز هر نمونه باید چهار مرتبه تکرار شوند از این نگاه نتایج استفاده قوم و روبره‌های الکوبومیوی برای تامینه سندپویی از سری 60-601 AL-48-601615 360/154 میلی‌متر برای روبه‌جویی و یک ورق مربوط با ابعاد 45/150 میلی‌متر. برای رویه پشتی پال بهبود داخل آن تهیه شده است; همچنین هسته ساندهای

1 Plastic Collapse
بخش پشتی دستگاه و ابعاد هندسی مربوط به آن نمایش داده شده است. نیروی روت درجهان، به طوری که شرایط مزی کامل گیبرد در لبه‌های رویه پشتی سازه ساندوزی یجی تأمین گردید. ماده منفجره نیز با استفاده از نگهدارنده تقلیلی کلی پولار فاصله ماده منفجره تا پایل ساندوزی 600 میلی‌متر در افزایش ماده منفجره موج شاک تولید شده از طرق لوله هداهن شده و به پایین برخورد کرده و باعث تغییر شکل آن می‌شود.

شکل 4- منحنی فشاری فلزی‌سازی با نسبت چگالی 8 درصد

شکل 5- نمایی از دستگاه لوله شاک انفجاری

شکل 3- نمایی از دستگاه سانشام برای انجام آزمایش فشار محوری و نمونه فلزی گرفته در بین دو فک دستگاه

موموم به چگالی قومی افزای شده که در آن، تنزیکن‌شدن
چگالی قوم به چگالی ماده سازندگان خود، باعث افزایش ناگهانی
تیرو می‌گردد.

شیب‌سازی عدید
3- در این مقاله، برای شیب سازی عدید مسوله از اتودین۲ استفاده شده است که یک نرم‌افزار اجزاء محدود فیبرگل صفحه بالاولی‌های دو و سه‌بعدی است. انتخاب صحیح مدل ماده و معادله حالت و عمل صحیح تاییدی مسیله از مدل، شرایط مزی و استفاده از جلوگیری مناسب با نوع مسیله و تعیین کردن مدل مدل‌های مختلف، امکان انجام شیب‌سازی صحیح، به کمک این نرم‌افزار را فراهم
می‌کند.

۲ Autodync

۱ Densification
مطالعه تجزیه و عدسی اثر ضخامت هسته و رویه در پانل‌های ساندویچی با هسته تفو و رویه‌های آلومینیومی تحت بارگذاری انفجاری

در گام اول به ایجاد مدل بردایش شده سپس به تعریف خصوصیات مواد و برگزاری شرایط مزی و معیان کردن ابزارهای جستجوی می‌تواند بی‌محال نمایانگر اقدام شده است. نتایج سیستم‌ها به این ترتیب تابستانی می‌باشد.

شکل 6- شماتیک دستگاه لوله شک افجاری و ابعاد هندسی مربوط به آن

شکل 8- نمودار مقدار پیک فشار ایجاد شده در مرکز پنال بر حسب تعداد المان‌های هوا

شکل 9- نمودار مقدار ماکزیمم جابجایی ایجاد شده در مرکز رویه زیری پنال ساندویچی بر حسب تعداد المان‌های پنال

حلگرهای استفاده شده برای اجرای سازه ساندویچی و شکل نشان داده شده است. توزیع نتوانسته‌های ایجاد شده از نظر آماری، تعریف و اعمال

شکل 7- مدل شبیه‌سازی شده

شکل 6- شماتیک دستگاه لوله شک افجاری و ابعاد هندسی مربوط به آن

شکل 8- نمودار مقدار پیک فشار ایجاد شده در مرکز پنال بر حسب تعداد المان‌های هوا

شکل 9- نمودار مقدار ماکزیمم جابجایی ایجاد شده در مرکز رویه زیری پنال ساندویچی بر حسب تعداد المان‌های پنال

حلگرهای استفاده شده برای اجرای سازه ساندویچی و شکل نشان داده شده است. توزیع نتوانسته‌های ایجاد شده از نظر آماری، تعریف و اعمال

شکل 7- مدل شبیه‌سازی شده

شکل 6- شماتیک دستگاه لوله شک افجاری و ابعاد هندسی مربوط به آن

شکل 8- نمودار مقدار پیک فشار ایجاد شده در مرکز پنال بر حسب تعداد المان‌های هوا

شکل 9- نمودار مقدار ماکزیمم جابجایی ایجاد شده در مرکز رویه زیری پنال ساندویچی بر حسب تعداد المان‌های پنال

حلگرهای استفاده شده برای اجرای سازه ساندویچی و شکل نشان داده شده است. توزیع نتوانسته‌های ایجاد شده از نظر آماری، تعریف و اعمال

شکل 7- مدل شبیه‌سازی شده

شکل 6- شماتیک دستگاه لوله شک افجاری و ابعاد هندسی مربوط به آن

شکل 8- نمودار مقدار پیک فشار ایجاد شده در مرکز پنال بر حسب تعداد المان‌های هوا

شکل 9- نمودار مقدار ماکزیمم جابجایی ایجاد شده در مرکز رویه زیری پنال ساندویچی بر حسب تعداد المان‌های پنال

حلگرهای استفاده شده برای اجرای سازه ساندویچی و شکل نشان داده شده است. توزیع نتوانسته‌های ایجاد شده از نظر آماری، تعریف و اعمال

شکل 7- مدل شبیه‌سازی شده

شکل 6- شماتیک دستگاه لوله شک افجاری و ابعاد هندسی مربوط به آن

شکل 8- نمودار مقدار پیک فشار ایجاد شده در مرکز پنال بر حسب تعداد المان‌های هوا

شکل 9- نمودار مقدار ماکزیمم جابجایی ایجاد شده در مرکز رویه زیری پنال ساندویچی بر حسب تعداد المان‌های پنال

حلگرهای استفاده شده برای اجرای سازه ساندویچی و شکل نشان داده شده است. توزیع نتوانسته‌های ایجاد شده از نظر آماری، تعریف و اعمال

شکل 7- مدل شبیه‌سازی شده
(1) برای تعیین وضعيت تعیین از شرایط اصطلاحی و شرایط تیپ برهم کنش مناسب است. در این شیب‌سازی، برای تعیین

\[p = (\gamma - 1)pe + p_{shift} \]

(2) که در آن p_{shift} مقادیر کوچک فشار به عنوان فشار آغاز است

که در اینجا فرض شده است که صفر باشد. مقادیر γ نیز برای

\[1/4 \] در نظر گرفته شده است.

۲-۲-۳ - ماده منفجره

برای ماده منفجره از معادله حالت \(^1\) استفاده شده است.

این معادله حالت، انتفاض کامل را مدل‌سازی می‌کند و به

\[p = A\left(1 - \frac{w}{R_1V}\right)e^{-R_1V} + B\left(1 - \frac{w}{R_2V}\right)e^{-R_2V} + \frac{WE}{V} \] (3)

\[\text{که در آن} \quad p, \quad R_1, \quad R_2, \quad A, \quad B, \quad w \text{ مدل‌سازی می‌کند و معادلات حالت ارتباط فشار را با تغییر حجم یا نسبت ناشان می‌دهند. در اغلب مسائل ضریه از قبیل، فضای انتفاض با تغییر حجم انتفاض توصیه می‌شود. مدل‌های ورودی این معادله حالت}

برای ماده منفجره C4 در جدول ۱-۱ ارائه شده است.

| جدول ۱-۱ | پارامتر معادله حالت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>برای ماده منفجره C4</td>
<td>A (GPa)</td>
<td>B (GPa)</td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td>۰.۹۷۷</td>
<td>۰.۹۵</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
</tbody>
</table>

۲-۲-۴ - ماده منفجره

برای ماده منفجره از شرایط حالت خصی و معادله

\[pV = RT \]

(1) است

\[\text{به دلیل مشکلاتی که در مسائل چند ماده‌ای وجود دارد و معادله کوچک فشار ممکن است، ایجاد سرعتتای

97 | خداوند و همگان

\(^4\) Jons-Wilkins-Lee EOS

\(^5\) Crushable foam

1: Lagrange/Lagrange

2: Euler/Lagrange

3: Flow-out

مکانیک سازه‌های نیروی/سال ۱۳۹۷/دیو ۶/شماره ۳
معادله حالت شکور برای مدل سارای شرایط شکور در کرن‌های بالا مورد استفاده قرار می‌گیرد که به صورت رابطه

\[p = p_H + \Gamma p(e - e_H) \]

\[p_H = \frac{2\rho_0 - 1}{1 + \mu} \]

\[e_H = \frac{\rho_0}{2\rho_0 + 1} \mu \]

در جدول ۳ ارائه شده است.

| جدول ۲ - پارامترهای معادله حالت شکور برای آلومنیوم |
|---|---|---|---|
| V | ε_o (m/s) | s |
| 1/87 | 620 | 0.7 |

در معادله حالت گاز ایضال فشار تابعی از حجم مخصوص و انرژی می‌باشد. در بسیاری از موارد تأثیر تغییرات انرژی پسربند کم و قابل صرف‌نظر گردید است با یکن در تالاب فشار مورد استفاده یافته از دانسته و یا حجم مخصوص است. این رابطه به شکل رابطه (۹) بیان می‌شود:

\[p = K \mu \]

که در آن ۱ – ۱ = (ρ/ρ_0) K مدول بالک است.

مدل شتاب‌گذار فوم معادله‌ای نسبت به مدل تمدن رفتار فوم‌های خردشونده تحت بارهای ضربه‌ای است [۱۸] در این مدل فشار و نیرو بر اساس روابط ۵ و ۶ با توجه به نرخ کرانش اصلاح می‌گردد:

\[p^{n+1} = p^n + K \epsilon_v^{n+1/2} \Delta t^{n+1/2} \]
\[S_{ij}^{n+1} = S_{ij}^n + 2G (\dot{\epsilon}_{ij}^{n+1/2} - \delta_{ij} \epsilon_v^{n+1/2}) \Delta t^{n+1/2} \]

در معادلات بالا P، K، نیرو S، G و فشار P بالا در مدل بالک و همچنین به‌بینان نرخ کرانش حجمی است. در این مدل سرعت تناوب مقادیر نشان از نشان اینکه در هر حال تغییر حجمی می‌باشد. تغییر به مقادیر مجزا با افزایش می‌شود. از آنجا که این عمل در هر یک از جهتهای اصلی به صورت مستقیم انجام می‌شود، ضریب پواسون در این مدل برای صفر بوده و می‌گردد و کرانش حجمی از طریق رابطه (۷) به‌دست می‌آید:

\[\epsilon_v = \ln \left(\frac{V_0}{V} \right) \]

در رابطه بالا V از حجم اولیه و \(V \) حجم پس از انجام تغییر شکل است. جهت این مدل مفاد می‌باشد و حذف مانند ندارد. از کتابی فارسی۱‌المان استفاده شده است.

| جدول ۳ - مقدار پارامترهای مدل جانسون-کوک برای آلومنیوم |
|---|---|---|---|
| A (MPa) | B (MPa) | n | c | m | \(k_0 (1/s) \) |
| ۱۳۴/۱ | ۱۱۳/۸ | ۰/۹۲ | ۰/۸۲ | ۱/۳۴ | ۱ |
جدول 6- مقایسه تجربی و عددي- ماکزیموم جابجایی مركز روبه جلویی

<table>
<thead>
<tr>
<th>درصد اختلاف</th>
<th>ماکزیموم جابجایی مرکز روبه جلویی (mm)</th>
<th>نمونه</th>
<th>تجربی</th>
<th>عددي</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>147</td>
<td>28</td>
<td>21/8</td>
<td>2</td>
</tr>
<tr>
<td>0.03</td>
<td>143</td>
<td>28</td>
<td>21/8</td>
<td>2</td>
</tr>
<tr>
<td>0.04</td>
<td>2/8</td>
<td>29</td>
<td>28/3</td>
<td>3</td>
</tr>
<tr>
<td>0.05</td>
<td>2/5</td>
<td>29</td>
<td>28/3</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 7- مقایسه نتایج تجربی و عددي- ماکزیموم جابجایی مرکز روبه پشتی

<table>
<thead>
<tr>
<th>درصد اختلاف</th>
<th>ماکزیموم جابجایی مرکز روبه پشتی (mm)</th>
<th>نمونه</th>
<th>تجربی</th>
<th>عددي</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>41</td>
<td>164</td>
<td>10/4</td>
<td>2</td>
</tr>
<tr>
<td>0.03</td>
<td>41</td>
<td>164</td>
<td>10/4</td>
<td>2</td>
</tr>
<tr>
<td>0.04</td>
<td>8/2</td>
<td>17</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>0.05</td>
<td>8/2</td>
<td>17</td>
<td>17</td>
<td>2</td>
</tr>
</tbody>
</table>

نتایج و بحث

در این قسمت تاثیر ضخامت هسته فوم پلی بورتان بر میزان جذب آنزی و مقادیر جابجایی مسیر پشتی سازه ساندویچی تحت ابزارال حافل زان انفجار 4 گرم ماده منفجره داخل لوله شک، مورد مطالعه فاز گرفته است. همچنین میزان جذب آنزی توسط اجزای مختلف سازه و نیز انزی جذب شده بر واحد وزن که بیانگر کارایی سازه در برقرار بار انفجار است است. استحکام شده و مورد ارزیابی قرار گرفته است. بررسی‌های تجربی ساندویچی تحت بار انفجار، در چهار نمونه متقاق با 1 گرم فوم پلی بورتان انجام شده که در جدول 5 مقادیر آنها امده است. نتایج حاصل از بررسی‌های تجربی و شیب‌سازی عددي، برای ماکزیموم جابجایی مرکز روبه جلویی و پشتی، به ترتیب در جداول 2 و 3 ارائه و مقایسه شده و در شکل 10 نشان داده شده‌اند. همانطور که مشاهده می‌شود، بین نتایج تجربی و عددي همخوانی عالی برقرار است.

جدول 5- مشخصات نمونه‌ها تهیه شده برای بررسی‌های تجربی

<table>
<thead>
<tr>
<th>ضخامت هسته (mm)</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
مطالعه تجزیه و عذدی اثر ضخامت هسته و رویه در پانل‌های ساندویچ‌ای با هسته فوم و رویه‌های آلومینیومی تحت بارگذاری انفجاری

قرارگیری ماده منفجره خارج و ماکتی دوربرد منعكس شده و به سمت پنال ساندویچی حرکت کرده است. پس از چندین بار رفت و برگشت موج، فشار آن کاهش یافت و در نهایت مستحکم شد.

شکل 10- مقایسه نتایج شبیه‌سازی های عددي با بررسی های تجريبي

در شکل 13 تاریخچه زمانی جابجايی مركز روبه‌روی جلویی و پشتی و فشردهگی هسته برای یک نمونه از پانل‌ها (پنال شماره 3) نشان داده شده است. فشردهگی هسته قوم از اختلاف بین جابجايی عرضی مركز روبه‌روی جلویی و پشتی محاسبه شده است. با توجه به شکل، قابلیت فشردهگی هسته و نتایج قابل توجه به شکل، فشردهگی هسته قومی به طور قابل توجهی جابجايی عرضی روبه‌روی پشتی را کاهش داده است. همينچنین پس از اولين پنک جابجايی، نوساناتي جزيي در روبي‌هاي جلوپي و پشتی مشاهده ميشود، كه در نهایت به یک مقدار ثابت همگرا مي‌گردد. لازم یا برکناری انجام‌شود.

شکل 12- نحوه انتقال موج شاک در داخل لوله شاک انفجاری و بروخورد آن به پانل ساندویچی

شکل 11- مقایسه سطح مقطع عرضی نمونه‌های تجريبي با مدل‌هاي شبیه‌سازی عددي

مکانیک سازدها و شاردها/ سال 1397/ دوره 8/ شماره 3
است که چنین تموداری برای سایر پانل‌ها نیز رود مشابهی را دارد و به همین دلیل از این روش تمودار برای بقیه پانل‌ها صرف‌نظر شده است.

در شکل 14 تاریخچه زمانی جدید انرژی روابط جلویی و پشتی و همسته قومی برای پانل 3 نشان داده شده است. همان‌طور که مشاهده می‌شود، سهم جدید انرژی روابط جلویی کمتر از روابط پشتی است که دلیل آن متفاوت بودن شرط مزاری انها است. شرط مزاری روابط جلویی آزاد است و می‌تواند آزادانه به هر هسته به سمت عقب حرکت کند و به همین دلیل تغییر شکل کمتری در ان رخ داده و در نتیجه جدید انرژی آن کمتر خواهد‌بود. با توجه به شکل، تا قبل از

4-1 تأثیر وجود هسته قومی

اگر هسته قوم از زمان دانشیچی جدید شود، تنها دو صفحه باقی ماند. با بررسی جابجایی روبه پشتی و جدید انرژی این دو صفحه و مقایسه آن با یک سازه ساندویچی می‌توان تأثیر هسته را مشاهده کرد. در اینجا از پانل ساندویچی 3 برای مقایسه استفاده می‌شود. نتایج عددی مربوط به تاریخچه زمانی جابجایی مرکزی روبه پشتی و پشتی انرژی جدید شده به ترتیب در شکل‌های 15 و 16 نشان داده شده است. با دقت در این شکل‌ها می‌توان متوجه شد که هسته در مقدار جابجایی روبه پشتی و پشتی انرژی اثر بسزایی دارد. به طوری که مقدار ماکزیمم جابجایی روبه پشتی سازه ساندویچی کاهش 38/6 درصدی جدید انرژی آن افزایش

شکل 13- تاریخچه زمانی جابجایی مرکزی روابط جلویی و پشتی و فشرده گی هسته پانل ساندویچی شماره 3

شکل 15- تاریخچه زمانی جابجایی مرکزی روابط جلویی و پشتی بدون هسته و سازه ساندویچی شماره 3

شکل 16- تاریخچه زمانی جابجایی مرکزی روابط جلویی و پشتی و همسته پانل ساندویچی شماره 3
مطالعه تجزیه و عذبی اثر ضخامت هسته و رویه در پانل‌های ساندویچی با هسته فوم و رویه‌های آلومینیوم تحت بارگذاری انفجاری

شکل ۱۷ - میزان جذب انرژی جذب شده بر واحد جرم در سازه بدون هسته و سازه ساندویچی شماره ۲

شکل ۱۸ - مقایسه بین تاریخچه زمانی جابجایی عرضی مرکز روبه روی شیت پالی‌های ساندویچی مختلف

شکل ۱۹ - پروپتی تغییر شکل پسماند رویه پشتی پالی‌های ساندویچی مختلف نسبت به فاصله از مرکز پالی

در این قسمت به بررسی اثر ضخامت هسته بر جابجایی رویه پشتی و میزان جذب انرژی سازه پرداخته می‌شود. شکل ۱۸ تاریخچه زمانی جابجایی عرضی مرکز روبه روی شیت پالی‌های ساندویچی مختلف را نشان می‌دهد. همان‌طور که مشاهده می‌شود با افزایش ضخامت هسته نسبت به همسانگ همان‌طور که در این شکل مشاهده می‌شود، جذب انرژی بر واحد جرم سازه دارای هسته ۱۱/۲ برابر سازه بدون هسته افزایش یافته است.

شکل ۲۰ - تأثیر ضخامت هسته

در این قسمت به بررسی اثر ضخامت هسته بر جابجایی رویه پشتی و میزان جذب انرژی سازه پرداخته می‌شود. شکل ۱۸ تاریخچه زمانی جابجایی عرضی مرکز روبه روی شیت پالی‌های ساندویچی مختلف را نشان می‌دهد. همان‌طور که مشاهده می‌شود با افزایش ضخامت هسته نسبت به همسانگ همان‌طور که در این شکل مشاهده می‌شود، جذب انرژی بر واحد جرم سازه دارای هسته ۱۱/۲ برابر سازه بدون هسته افزایش یافته است.
ضخامت هسته مقدار کلی میزان جنب شده افزایش می‌یابد همچنین با افزایش ضخامت هسته، هر میلیمتر ضخامت کلی میزان جنب شده افزایش می‌یابد. با توجه به نتایج بالا، میزان تغییرات جنب شده هنگام اعمال تنش و تغییرات در ضخامت هسته مشاهده می‌شود که با افزایش ضخامت هسته تا ضخامت 30 میلی‌متر استفاده شده است. نتایج حاصل مربوط به تغییرات مشاهده شده داشته باشد. برای بدست آوردن این اطلاعات، میزان تغییرات جنب شده هنگام اعمال تنش و تغییرات در ضخامت هسته مشاهده می‌شود که با افزایش ضخامت هسته تا ضخامت 30 میلی‌متر استفاده شده است. نتایج حاصل مربوط به تغییرات مشاهده شده داشته باشد.

جدول 4- مشخصات سازه‌های ساندویچی در نظر گرفته

<table>
<thead>
<tr>
<th>شده برای بررسی ضخامت روبه‌روی (mm)</th>
<th>ضخامت روبه‌روی جنبی (mm)</th>
<th>سازه ساندویچی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SP1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>SP2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>SP3</td>
</tr>
</tbody>
</table>

شکل 21- میزان انرژی جنب شده در اجزای پایین‌های ساندویچی مختلف

شکل 20- میزان انرژی جنب شده در اجزای پایین‌های ساندویچی مختلف

شکل 20- میزان انرژی جنب شده در اجزای پایین‌های ساندویچی مختلف

مکانیک سازه‌ها و شارها/ سال 1397/ دوره 8/ شماره 3
نیاز انجام تحقیق‌های اجرایی محدود، مطالعاتی رول تأثیر ضخامت فوم و مقادیر ایمپلائس وارد شده بر مریان جذب انرژی و مقدار جابجایی سطح پشتی ساندویچ انجام شد. خواص مکانیکی فوم با کمک آزمایش‌های فشار محوری استخراج شد و مطالعات پرآزمونی در مورد تأثیر سطح پشتی ساندویچ با پشتی ساندویچ یافت. آزمایش‌های فشرده نشان داد که انتقال انرژی در پانل‌های ساندویچی با استفاده از سیستم‌های همپیوپ، ضریب افزایش سطح پشتی ساندویچی به طور چشمگیری کاهش یافته و جذب انرژی افزایش می‌یابد. همچنین افزایش ضخامت سطح پشتی فرمی یکی از روش‌های ایجاد ساندویچی پوشش خوده داشت. لازم به ذکر است این تحقیقات در زمینه‌های مرتبط با اعمال پانل‌های دیمپاسکی بر روی سازه‌های مختلف، کارهای پزوهشی مختلفی به نسبت سالهای ۲۰۰۰-۲۰۱۰ که علاوه بر تواند در صورت نباید از آن‌ها نیز استفاده نمایند.

مراجع

شکل ۲۲-تاریخچه زمانی جابجایی روبه روبروی ساندویچی در نظر گرفته شد. بزویی بررسی انرژی ضخامت روبه

شکل ۲۳-میزان انرژی جذب شده در اجرای سازه‌های در نظر گرفته شد. بزویی بررسی انرژی ضخامت روبه

مطالعه تجزیه و عذدی اثر ضخامت ضخامت هسته و رویه در پانل‌های ساندوبیجی با هسته شیمی و رویه‌های آلومینیوم تحت بارگذاری انفجاری

ارتعاشی پیوستگی. مجله علمی پژوهشی مکانیک سازدها و شاردها 32-41 (3 5:3) 8

[۳۴] حسینی، ر. فاقدانی نارب هد (۱۳۹۶) بررسی تجزیه برداشت انزی از راه رفتار انسان. مجله علمی پژوهشی مکانیک سازدها و شاردها 181-182 (4 3:2) 7

[۳۵] حسینی، ر. ابراهیمی، سیمانی غ. نوری م (۱۳۹۶) بررسی تجزیه اثر کاهش عرض نیتر بر پژوهش برداشت کننده انزی