بررسی و بهینه سازیخواص مکانیکی نانوکامپوزیت‌های هیبریدی پایه اپوکسی تقویت شده با الیاف کربن به روش تاگوچی

نوع مقاله : مقاله مستقل

نویسنده

استادیار، گروه مهندسی مکانیک، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

چکیده

در این مقاله، خواص مکانیکی لمینیتهای هیبریدی با ترکیبات اپوکسی/ الیاف کربن / نانو خاک رس/ نانو دی اکسید تیتانیوم و اپوکسی/ الیاف کربن/ نانو خاک رس/ نانو لوله کربنی ، در ابتدا بصورت مجزا و نهایتا بصورت مقایسه ای مورد بررسی قرار گرفت. بدین منظور نمونه هایی فاقد نانو ذرات متشکل از اپوکسی و 16 لایه فیبر کربن و همچنین نمونه های اپوکسی و فیبر کربنِ حاوی نانو ذرات که در چهار درصد وزنی مختلف و دو ترکیب (خاک رس/نانولوله های کربنی) و (خاک رس/ دی اکسید تیتانیوم) به اپوکسی اضافه گردیده بودند ساخته و مورد آزمایش قرار گرفتند. از نکات این پژوهش، بررسی آزمایشگاهی و بهینه سازی به کمک روش تاگوچی ، در جهت کاهش تعداد آزمایشها و کاستن هزینه ها و دستیابی به مقاومت کششی وخمشی بهینه در نمونه های کامپوزیتی ساخته شده می باشد. نتایج حاصله از این پژوهش نشان داد که نمونه های حاوی نانو رس با 5/0درصد وزنی و نانو دی اکسید تیتانیوم با 1 درصد و نانو لوله کربنی با 5/0 درصد وزنی دارای بالاترین مقاومت در نمونه هیبریدی نهای خواهد بود.

کلیدواژه‌ها

موضوعات


[1] احمدی ومکانی س، نصرتی هـ، طهرانی دهکردی م (1394) تاثیر میزان خمش بر افت استحکام در کامپوزیت های خالص و هیبرید تقویت شده با الیاف ترد و انعطاف پذیر. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 18-11 :(1)6.
[2] Azadi R, Rostamiyan Y (2015) Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization. Constr Build Mater 88: 212-224.
[3] Rostamiyan Y, Fereidoon AB, Hamed Mashhadzadeh A, Khalili MA (2013) Augmenting epoxy toughness by combination of both thermoplastic and nanolayered materials and using artificial intelligence techniques for modeling and optimization. J Polym Res 20 (6): 1-11.
[4] Liao Y-H M-TO, Liang Z, Zhang C, Wang B  (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A 175-181
[5] Montazeri AKA, Javadpour J, Tcharkhtchi A  (2010) Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles. Mater Des 31(7): 3383-3388
[6] Allaoui ABS, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15): 1993-1998
[7] Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36 (11): 1525-1535.
[8] Zhou Y PF, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater Sci Eng A 426(1-2): 221-228
[9] Iwahori Y IS, Sumizawa T, Ishikawa T (2005) Mechanical properties improvements in two-phase and three-phase composites using carbon nano-fiber dispersed resin. Compos Part A Appl Sci Manuf 36 (10):1430-1439
[10] Shahid NVR, Barron AR (2005) Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos Sci Technol 65 (14):2250-2258
[11] Dean DOA, Richmond S, Nyairo E (2006) Multiscale fiber-reinforced nanocomposites: Synthesis, processing and properties. Compos Sci Technol 66 (13): 2135-2142.
[12] Siddiqui NAWR, Kim J-K, Leung CCK, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos Part A Appl Sci Manuf 38 (2): 449-460.
[13] Timmerman JF HB, Seferis JC. (2002) Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos Sci Technol 62(9): 1249-1258
[14] Uda N, Ono K, Kunoo K (2009) Compression fatigue failure of CFRP laminates with impact damage. Compos Sci Technol 69(14): 2308-2314.
[15] Gómez-delRío T, Rodríguez J, Pearson RA (2014) Compressive properties of nanoparticle modified epoxy resin at different strain rates. Compos Part B: Eng 57(0):173-179.
[16] Sultan JN MF (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13(1): 29-34
[17] Tanyildizi H, Şahin M (2015) Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Constr Build Mater 79(0): 97-103.
[18] Gu F, Hall P, Miles NJ, Ding Q, Wu T (2014) Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis. Mater Des 62:189-198.
[20] Mirmohseni A, Zavareh S (2011) Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology. J Polym Res 18 (4): 509-517.